Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568894

RESUMEN

The ongoing COVID-19 pandemic has led to the emergence of new SARS-CoV-2 variants as a result of continued host-virus interaction and viral genome mutations. These variants have been associated with varying levels of transmissibility and disease severity. We investigated the phenotypic profiles of six SARS-CoV-2 variants (WT, D614G, Alpha, Beta, Delta, and Omicron) in Calu-3 cells, a human lung epithelial cell line. In our model demonstrated that all variants, except for Omicron, had higher efficiency in virus entry compared to the wild-type. The Delta variant had the greatest phenotypic advantage in terms of early infection kinetics and marked syncytia formation, which could facilitate cell-to-cell spreading, while the Omicron variant displayed slower replication and fewer syncytia formation. We also identified the Delta variant as the strongest inducer of inflammatory biomarkers, including pro-inflammatory cytokines/chemokines (IP-10/CXCL10, TNF-α, and IL-6), anti-inflammatory cytokine (IL-1RA), and growth factors (FGF-2 and VEGF-A), while these inflammatory mediators were not significantly elevated with Omicron infection. These findings are consistent with the observations that there was a generally more pronounced inflammatory response and angiogenesis activity within the lungs of COVID-19 patients as well as more severe symptoms and higher mortality rate during the Delta wave, as compared to less severe symptoms and lower mortality observed during the current Omicron wave in Thailand. Our findings suggest that early infectivity kinetics, enhanced syncytia formation, and specific inflammatory mediator production may serve as predictive indicators for the virulence potential of future SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Virulencia , Pandemias , Citocinas/genética , Biomarcadores , Células Gigantes
2.
Genome Biol Evol ; 15(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36852863

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, and scientists around the world are currently studying the virus intensively in order to fight against the on-going pandemic of the virus. To do so, SARS-CoV-2 is typically grown in the lab to generate viral stocks for various kinds of experimental investigations. However, accumulating evidence suggests that such viruses often undergo cell culture adaptation. Here, we systematically explored cell culture adaptation of two SARS-CoV-2 variants, namely the B.1.36.16 variant and the AY.30 variant, a sub lineage of the B.1.617.2 (Delta) variant, propagated in three different cell lines, including Vero E6, Vero E6/TMPRSS2, and Calu-3 cells. Our analyses detected numerous potential cell culture adaptation changes scattering across the entire virus genome, many of which could be found in naturally circulating isolates. Notable ones included mutations around the spike glycoprotein's multibasic cleavage site, and the Omicron-defining H655Y mutation on the spike glycoprotein, as well as mutations in the nucleocapsid protein's linker region, all of which were found to be Vero E6-specific. Our analyses also identified deletion mutations on the non-structural protein 1 and membrane glycoprotein as potential Calu-3-specific adaptation changes. S848C mutation on the non-structural protein 3, located to the protein's papain-like protease domain, was also identified as a potential adaptation change, found in viruses propagated in all three cell lines. Our results highlight SARS-CoV-2 high adaptability, emphasize the need to deep-sequence cultured viral samples when used in intricate and sensitive biological experiments, and illustrate the power of experimental evolutionary study in shedding lights on the virus evolutionary landscape.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Chlorocebus aethiops , SARS-CoV-2/genética , Células Vero , Glicoproteínas
3.
J Exp Pharmacol ; 15: 13-26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36699694

RESUMEN

Background: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems. Aim of Study: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo. Materials and Methods: The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A. Results: All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals. Conclusion: Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.

4.
Microbiol Spectr ; 10(3): e0050322, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604133

RESUMEN

Determination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is important in guiding the infection control and differentiating between reinfection and persistent viral RNA. Although viral culture is the gold standard to determine viral infectivity, the method is not practical. We studied the kinetics of SARS-CoV-2 total RNAs and subgenomic RNAs (sgRNAs) and their potential role as surrogate markers of viral infectivity. The kinetics of SARS-CoV-2 sgRNAs compared to those of the culture and total RNA shedding in a prospective cohort of patients diagnosed with coronavirus disease 2019 (COVID-19) were investigated. A total of 260 nasopharyngeal swabs from 36 patients were collected every other day after entering the study until the day of viral total RNA clearance, as measured by reverse transcription PCR (RT-PCR). Time to cessation of viral shedding was in order from shortest to longest: by viral culture, sgRNA RT-PCR, and total RNA RT-PCR. The median time (interquartile range) to negativity of viral culture, subgenomic N transcript, and N gene were 7 (5 to 9), 11 (9 to 16), and 18 (13 to 21) days, respectively (P < 0.001). Further analysis identified the receipt of steroid as the factors associated with longer duration of viral infectivity (hazard ratio, 3.28; 95% confidence interval, 1.02 to 10.61; P = 0.047). We propose the potential role of the detection of SARS-CoV-2 subgenomic RNA as the surrogate marker of viral infectivity. Patients with negative subgenomic N RNA RT-PCR could be considered for ending isolation. IMPORTANCE Our study, combined with existing evidence, suggests the feasibility of the use of subgenomic RNA RT-PCR as a surrogate marker for SARS-CoV-2 infectivity. The kinetics of SARS-CoV-2 subgenomic RNA should be further investigated in immunocompromised patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Biomarcadores , COVID-19/diagnóstico , Humanos , Estudios Prospectivos , ARN Viral/genética , SARS-CoV-2/genética
5.
Biomedicines ; 9(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34572416

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic severely impacts health, economy, and society worldwide. Antiviral drugs against SARS-CoV-2 are urgently needed to cope with this global crisis. It has been found that the biogenesis and release mechanisms of viruses share a common pathway with extracellular vesicles (EVs). We hypothesized that small molecule inhibitors of EV biogenesis/release could exert an anti-SARS-CoV-2 effect. Here, we screened 17 existing EV inhibitors and found that calpeptin, a cysteine proteinase inhibitor, exhibited the most potent anti-SARS-CoV-2 activity with no apparent cytotoxicity. Calpeptin demonstrated the dose-dependent inhibition against SARS-CoV-2 viral nucleoprotein expression in the infected cells with a half-maximal inhibitory concentration (IC50) of 1.44 µM in Vero-E6 and 26.92 µM in Calu-3 cells, respectively. Moreover, calpeptin inhibited the production of infectious virions with the lower IC50 of 0.6 µM in Vero E6 cells and 10.12 µM in Calu-3 cells. Interestingly, a combination of calpeptin and remdesivir, the FDA-approved antiviral drug against SARS-CoV-2 viral replication, significantly enhanced the anti-SARS-CoV-2 effects compared to monotherapy. This study discovered calpeptin as a promising candidate for anti-SARS-CoV-2 drug development. Further preclinical and clinical studies are warranted to elucidate the therapeutic efficacy of calpeptin and remdesivir combination in COVID-19.

6.
J Nat Prod ; 84(4): 1261-1270, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33844528

RESUMEN

The coronaviruses disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has become a major health problem, affecting more than 50 million people with over one million deaths globally. Effective antivirals are still lacking. Here, we optimized a high-content imaging platform and the plaque assay for viral output study using the legitimate model of human lung epithelial cells, Calu-3, to determine the anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component, andrographolide. SARS-CoV-2 at 25TCID50 was able to reach the maximal infectivity of 95% in Calu-3 cells. Postinfection treatment of A. paniculata and andrographolide in SARS-CoV-2-infected Calu-3 cells significantly inhibited the production of infectious virions with an IC50 of 0.036 µg/mL and 0.034 µM, respectively, as determined by the plaque assay. The cytotoxicity profile developed over the cell line representatives of major organs, including liver (HepG2 and imHC), kidney (HK-2), intestine (Caco-2), lung (Calu-3), and brain (SH-SY5Y), showed a CC50 of >100 µg/mL for A. paniculata extract and 13.2-81.5 µM for andrographolide, respectively, corresponding to a selectivity index of over 380. In conclusion, this study provided experimental evidence in favor of A. paniculata and andrographolide for further development as a monotherapy or in combination with other effective drugs against SARS-CoV-2 infection.


Asunto(s)
Andrographis , Diterpenos/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Epiteliales/virología , Humanos , Hidroxicloroquina/farmacología , Pulmón/virología
7.
Sci Rep ; 10(1): 19963, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203926

RESUMEN

Since December 2019, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused severe pneumonia, a disease named COVID-19, that became pandemic and created an acute threat to public health. The effective therapeutics are in urgent need. Here, we developed a high-content screening for the antiviral candidates using fluorescence-based SARS-CoV-2 nucleoprotein detection in Vero E6 cells coupled with plaque reduction assay. Among 122 Thai natural products, we found that Boesenbergia rotunda extract and its phytochemical compound, panduratin A, exhibited the potent anti-SARS-CoV-2 activity. Treatment with B. rotunda extract and panduratin A after viral infection drastically suppressed SARS-CoV-2 infectivity in Vero E6 cells with IC50 of 3.62 µg/mL (CC50 = 28.06 µg/mL) and 0.81 µΜ (CC50 = 14.71 µM), respectively. Also, the treatment of panduratin A at the pre-entry phase inhibited SARS-CoV-2 infection with IC50 of 5.30 µM (CC50 = 43.47 µM). Our study demonstrated, for the first time, that panduratin A exerts the inhibitory effect against SARS-CoV-2 infection at both pre-entry and post-infection phases. Apart from Vero E6 cells, treatment with this compound was able to suppress viral infectivity in human airway epithelial cells. This result confirmed the potential of panduratin A as the anti-SARS-CoV-2 agent in the major target cells in human. Since B. rotunda is a culinary herb generally grown in China and Southeast Asia, its extract and the purified panduratin A may serve as the promising candidates for therapeutic purposes with economic advantage during COVID-19 situation.


Asunto(s)
Antivirales/farmacología , Chalconas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Chlorocebus aethiops , Humanos , Plantas Medicinales/química , SARS-CoV-2/fisiología , Células Vero , Replicación Viral , Zingiberaceae/química
8.
Microbiol Immunol ; 64(6): 445-457, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32246487

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne virus that causes arthralgic fever. Fibroblast-like synoviocytes play a key role in joint damage in inflammatory arthritides and can additionally serve as target cells for CHIKV infection. To gain a better understanding of CHIKV-induced arthralgia, the interaction between CHIKV and synoviocytes was investigated at the protein level. A gel-enhanced liquid chromatography-mass spectrometry (GeLC-MS/MS) approach was used to examine protein expression from primary human fibroblast-like synoviocytes (HFLS) infected with clinical isolates of CHIKV at 12 and 24 hr post infection. Our analysis identified 259 and 241 proteins of known function that were differentially expressed (>1.5 or <-1.5 fold change) following CHIKV infection at 12 and 24 hpi, respectively. These proteins are involved in cellular homeostasis, including cellular trafficking, cytoskeletal organization, immune response, metabolic process, and protein modification. Some of these proteins have previously been reported to participate in arthralgia/arthritis and the death of infected cells. Our results provide information on the CHIKV-induced modulation of cellular proteins of HFLS at an early stage of infection, as well as highlighting biological processes associated with CHIKV infection in the main target cells of the joint.


Asunto(s)
Fiebre Chikungunya , Fibroblastos/inmunología , Interacciones Microbiota-Huesped/inmunología , Proteoma/inmunología , Sinoviocitos/inmunología , Células Cultivadas , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/patología , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Fibroblastos/patología , Humanos , Proteómica/métodos , Sinoviocitos/patología , Replicación Viral
9.
Antiviral Res ; 168: 1-8, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31075349

RESUMEN

Dengue viruses (DENVs) have threatened 2/3 of the world population for decades. Thus, combating DENV infection with either antiviral therapy or protective vaccination is an urgent goal. In the present study, we investigated the anti-DENV activity of insect cell-derived anionic septapeptides from C6/36 mosquito cell cultures persistently infected with DENV. These molecules were previously shown to protect C6/36 and Vero cells against DENV infection. We found that treatment with these septapeptides strongly and rapidly downregulated the multiplication of DENV-1 16007, DENV-3 16562, and DENV-4 1036 but not that of DENV-2 16681 in primary human monocytes. This inhibitory effect was likely mediated through various routes including the increased production of antiviral cytokines (IFN-I), activation of mononuclear cell migration, and upregulation of the expression of antiviral miRNAs (has-miR-30e*, has-miR-133a, and has-miR-223) and inflammation-related miRNAs (has-miR-146a and has-miR-147). In conclusion, anionic septapeptides exerted anti-DENV activity in human monocytes through the upregulation of innate immune responses and the activation of several previously reported antiviral and inflammation-related miRNAs.


Asunto(s)
Antivirales/farmacología , Citocinas/metabolismo , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , MicroARNs/genética , Péptidos/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Culicidae/química , Culicidae/citología , Dengue/metabolismo , Dengue/virología , Virus del Dengue/fisiología , Humanos , Inmunidad Innata/efectos de los fármacos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/virología , Péptidos/síntesis química , Péptidos/aislamiento & purificación , Células Vero
10.
Proc Natl Acad Sci U S A ; 111(6): 2134-9, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469789

RESUMEN

Antibodies were prepared by immunizing mice with empty, immature particles of human enterovirus 71 (EV71), a picornavirus that causes severe neurological disease in young children. The capsid structure of these empty particles is different from that of the mature virus and is similar to "A" particles encountered when picornaviruses recognize a potential host cell before genome release. The monoclonal antibody E18, generated by this immunization, induced a conformational change when incubated at temperatures between 4 °C and 37 °C with mature virus, transforming infectious virions into A particles. The resultant loss of genome that was observed by cryo-EM and a fluorescent SYBR Green dye assay inactivated the virus, establishing the mechanism by which the virus is inactivated and demonstrating that the E18 antibody has potential as an anti-EV71 therapy. The antibody-mediated virus neutralization by the induction of genome release has not been previously demonstrated. Furthermore, the present results indicate that antibodies with genome-release activity could also be produced for other picornaviruses by immunization with immature particles.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Enterovirus Humano A/genética , Genoma Viral , Microscopía por Crioelectrón , Enterovirus Humano A/inmunología , Enterovirus Humano A/ultraestructura , Ensayo de Placa Viral
11.
J Gen Virol ; 92(Pt 2): 307-14, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20980529

RESUMEN

Virus evolution facilitates the emergence of viruses with unpredictable impacts on human health. This study investigated intra-host variations of the receptor-binding domain (RBD) of the haemagglutinin (HA) gene of the avian H5N1 viruses obtained from the 2004 and 2005 epidemics. The results showed that the mutation frequency of the RBD ranged from 0.3 to 0.6 %. The mutations generated one consensus and several minor populations. The consensus population of the 2004 epidemic was transmitted to the 2005 outbreak with increased frequency (39 and 45 %, respectively). Molecular dynamics simulation was applied to predict the significance of the variants. The results revealed that the consensus sequence (E218K/V248I) interacted unstably with sialic acid (SA) with an α2,6 linkage (SAα2,6Gal). Although the mutated K140R/E218K/V248I and Y191C/E218K/V248I sequences decreased the HA binding capacity to α2,3-linked SA, they were shown to bind α2,6-linked SA with increased affinity. Moreover, the substitutions at aa 140 and 191 were positive-selection sites. These data suggest that the K140R and Y191C mutations may represent a step towards human adaptation of the avian H5N1 virus.


Asunto(s)
Heces/virología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Secuencia de Aminoácidos , Animales , Aves , Secuencia de Consenso , Variación Genética , Genotipo , Hemaglutininas/química , Hemaglutininas/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/inmunología , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
12.
Microbiol Immunol ; 53(12): 675-84, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19954455

RESUMEN

Avian influenza viruses are a possible threat to human health as they may cause an influenza pandemic. Asian open-bill storks are migratory birds that brought H5N1 viruses into Thailand during the 2004-2005 epidemic. However, to date, there are no reports of direct transmission of stork-derived H5N1 viruses to Thais. Therefore, we questioned whether or not H5N1 viruses secreted in the feces of infected storks could directly infect cells derived from the human respiratory tract. To answer this question, we used primary NHBE cells as a model. We found that H5N1 viruses from two of the three cloacal swabs rapidly replicated and caused severe structural damage to the infected NHBE cells within the early phase of infection. Viruses from the remaining swab replicated poorly and caused no damage to the infected cells. The rapid-replicating viruses were able to replicate efficiently even in the presence of a high level of type I IFN production and stimulated a high level of IL-6 production but not the immunosuppressive cytokine, IL-10. The genotypic study revealed that the major genotypes of the two rapid-replicating viruses present in stork feces were the best-fit genotypes for replication in the primary NHBE cells. In contrast, the major NA-based genotype found in the cloacal swab containing slow-replicating viruses could not survive in the primary NHBE cells. Altogether, the data suggested that those stork-derived H5N1 viruses that preferentially replicated in human airway epithelial cells may exist in nature, and may not require additional mutations in order to defeat the species barrier.


Asunto(s)
Aves/virología , Heces/virología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Humana/transmisión , Mucosa Respiratoria/virología , Animales , Genotipo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/virología , Cinética , Mucosa Respiratoria/patología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...