Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 9: e10592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505799

RESUMEN

BACKGROUND: Full-scale biogas production from palm oil mill effluent (POME) was inhibited by low pH and highly volatile fatty acid (VFA) accumulation. Three strategies were investigated for recovering the anaerobic digestion (AD) imbalance on biogas production, namely the dilution method (tap water vs. biogas effluent), pH adjustment method (NaOH, NaHCO3, Ca(OH)2, oil palm ash), and bioaugmentation (active methane-producing sludge) method. The highly economical and feasible method was selected and validated in a full-scale application. RESULTS: The inhibited sludge from a full-scale biogas reactor could be recovered within 30-36 days by employing various strategies. Dilution of the inhibited sludge with biogas effluent at a ratio of 8:2, pH adjustment with 0.14% w/v NaOH, and 8.0% w/v oil palm ash were considered to be more economically feasible than other strategies tested (dilution with tap water, or pH adjustment with 0.50% w/v Ca(OH)2, or 1.25% NaHCO3 and bioaugmentation) with a recovery time of 30-36 days. The recovered biogas reactor exhibited a 35-83% higher methane yield than self-recovery, with a significantly increased hydrolysis constant (kH) and specific methanogenic activity (SMA). The population of Clostridium sp., Bacillus sp., and Methanosarcina sp. increased in the recovered sludge. The imbalanced full-scale hybrid cover lagoon reactor was recovered within 15 days by dilution with biogas effluent at a ratio of 8:2 and a better result than the lab-scale test (36 days). CONCLUSION: Dilution of the inhibited sludge with biogas effluent could recover the imbalance of the full-scale POME-biogas reactor with economically feasible and high biogas production performance.

2.
PeerJ ; 8: e9693, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879796

RESUMEN

BACKGROUND: Anaerobic digestion (AD) is a suitable process for treating high moisture MSW with biogas and biofertilizer production. However, the low stability of AD performance and low methane production results from high moisture MSW due to the fast acidify of carbohydrate fermentation. The effects of organic loading and incineration fly ash addition as a pH adjustment on methane production from high moisture MSW in the single-stage AD and two-stage AD processes were investigated. RESULTS: Suitable initial organic loading of the single-stage AD process was 17 gVS L-1 at incineration fly ash (IFA) addition of 0.5% with methane yield of 287 mL CH4 g-1 VS. Suitable initial organic loading of the two-stage AD process was 43 gVS L-1 at IFA addition of 1% with hydrogen and methane yield of 47.4 ml H2 g-1 VS and 363 mL CH4 g-1 VS, respectively. The highest hydrogen and methane production of 8.7 m3 H2 ton-1 of high moisture MSW and 66.6 m3 CH4 ton-1 of high moisture MSW was achieved at organic loading of 43 gVS L-1 at IFA addition of 1% by two-stage AD process. Biogas production by the two-stage AD process enabled 18.5% higher energy recovery than single-stage AD. The 1% addition of IFA into high moisture MSW was useful for controlling pH of the two-stage AD process with enhanced biogas production between 87-92% when compared to without IFA addition. Electricity production and energy recovery from MSW using the coupled incineration with biogas production by two-stage AD process were 9,874 MJ ton-1 MSW and 89%, respectively. CONCLUSIONS: The two-stage AD process with IFA addition for pH adjustment could improve biogas production from high moisture MSW, as well as reduce lag phase and enhance biodegradability efficiency. The coupled incineration process with biogas production using the two-stage AD process was suitable for the management of MSW with low area requirement, low greenhouse gas emissions, and high energy recovery.

3.
Bioresour Technol ; 296: 122304, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31704604

RESUMEN

Biogas production of palm oil mill effluent (POME) and empty fruit bunches (EFB) was performed by coupled liquid (L-AD) and solid-state (SS-AD) anaerobic digestion processes. POME was fed to L-AD digester, while mixed of effluent from L-AD and EFB was fed to SS-AD digester. The maximum overall methane production of 60.9 m3-CH4·ton-1 waste was obtained at an optimal hydraulic retention time of 30 days and an organic loading rate of 1.66 gVS·L-1-reactor·d-1 for L-AD and 6.03 gVS·L-1-reactor·d-1 for SS-AD with L-AD effluent recycling rate of 16.7 mL·L-1-reactor·d-1. The bacterial community in the L-AD reactor was different from the SS-AD reactor, while the archaeal community was similar in both reactors. Synergistaceae, Caldicoprobacteraceae and Lachnospiraceae were increased in the SS-AD reactor. Coupling L-AD and SS-AD is able to increase energy production by 29% and 71% compared to the L-AD and SS-AD alone, respectively, with no outsource SS-AD inoculum required.


Asunto(s)
Biocombustibles , Frutas , Anaerobiosis , Reactores Biológicos , Metano , Aceite de Palma , Aceites de Plantas
4.
Bioresour Technol ; 291: 121851, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31374416

RESUMEN

Thermotolerant cellulolytic consortium for improvement biogas production from oil palm empty fruit bunches (EFB) by prehydrolysis and bioaugmentation strategies was investigated via solid-state anaerobic digestion (SS-AD). The prehydrolysis EFB with Clostridiaceae and Lachnospiraceae rich consortium have maximum methane yield of 252 and 349 ml CH4 g-1 VS with total EFB degradation efficiency of 62% and 86%, respectively. Clostridiaceae and Lachnospiraceae rich consortium augmentation in biogas reactor have maximum methane yield of 217 and 85.2 ml CH4 g-1 VS with degradation efficiency of 42% and 16%, respectively. The best improvement of biogas production was achieved by prehydrolysis EFB with Lachnospiraceae rich consortium with maximum methane production of 113 m3 CH4 tonne-1 EFB. While, Clostridiaceae rich consortium was suitable for augmentation in biogas reactor with maximum methane production of 70.6 m3 CH4 tonne-1 EFB. Application of thermotolerant cellulolytic consortium into the SS-AD systems could enhance biogas production of 3-11 times.


Asunto(s)
Clostridiaceae/metabolismo , Clostridiales/metabolismo , Anaerobiosis , Biocombustibles , Celulosa/metabolismo , Frutas/metabolismo , Metano/biosíntesis , Aceite de Palma/metabolismo
5.
Bioresour Technol ; 214: 166-174, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27132224

RESUMEN

This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD.


Asunto(s)
Biocombustibles/microbiología , Biomasa , Aceites de Plantas/química , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Anaerobiosis , Metano/biosíntesis , Nitrógeno/análisis , Aceite de Palma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA