Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 162(3): 1392-405, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677937

RESUMEN

Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedlings in which adventitious root initiation was induced by excising roots from low-light-grown hypocotyls. Inhibition of auxin transport from the shoot apex abolishes adventitious root formation under these conditions. Root excision was accompanied by a rapid increase in radioactive indole-3-acetic acid (IAA) transport and its accumulation in the hypocotyl above the point of excision where adventitious roots emerge. Local increases in auxin-responsive gene expression were also observed above the site of excision using three auxin-responsive reporters. These changes in auxin accumulation preceded cell division events, monitored by a cyclin B1 reporter (pCYCB1;1:GUS), and adventitious root initiation. We examined excision-induced adventitious root formation in auxin influx and efflux mutants, including auxin insensitive1, pin-formed1 (pin1), pin2, pin3, and pin7, with the most profound reductions observed in ATP-binding cassette B19 (ABCB19). An ABCB19 overexpression line forms more adventitious roots than the wild type in intact seedlings. Examination of transcriptional and translational fusions between ABCB19 and green fluorescent protein indicates that excision locally induced the accumulation of ABCB19 transcript and protein that is temporally and spatially linked to local IAA accumulation leading to adventitious root formation. These experiments are consistent with localized synthesis of ABCB19 protein after hypocotyl excision leads to enhanced IAA transport and local IAA accumulation driving adventitious root formation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/crecimiento & desarrollo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Plantones/genética , Plantones/crecimiento & desarrollo
2.
Am J Bot ; 100(1): 183-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23284057

RESUMEN

PREMISE: Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. METHODS: Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. RESULTS: Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. CONCLUSION: The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Gravitropismo/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Sitios Genéticos/genética , Gravitropismo/efectos de los fármacos , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Fenotipo , Fosfatos/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
3.
Plant Cell Environ ; 36(5): 909-19, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23145472

RESUMEN

A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin-signalling pathways in modulating plant-microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter-species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant-microbe interactions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/anatomía & histología , Simbiosis , Transporte Biológico , Técnicas de Cocultivo , Células Vegetales/metabolismo , Células Vegetales/microbiología , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/genética , Nodulación de la Raíz de la Planta , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rhizobium/crecimiento & desarrollo , Transducción de Señal
4.
Development ; 138(16): 3485-95, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21771812

RESUMEN

We used genetic and molecular approaches to identify mechanisms by which the gaseous plant hormone ethylene reduces lateral root formation and enhances polar transport of the hormone auxin. Arabidopsis thaliana mutants, aux1, lax3, pin3 and pin7, which are defective in auxin influx and efflux proteins, were less sensitive to the inhibition of lateral root formation and stimulation of auxin transport following treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). By contrast, pin2 and abcb19 mutants exhibited wild-type ACC responses. ACC and indole-3-acetic acid (IAA) increased the abundance of transcripts encoding auxin transport proteins in an ETR1 and EIN2 (ethylene signaling)-dependent and TIR1 (auxin receptor)-dependent fashion, respectively. The effects of ACC on these transcripts and on lateral root development were still present in the tir1 mutant, suggesting independent signaling networks. ACC increased auxin-induced gene expression in the root apex, but decreased expression in regions where lateral roots form and reduced free IAA in whole roots. The ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG) had opposite effects on auxin-dependent gene expression. These results suggest that ACC affects root development by altering auxin distribution. PIN3- and PIN7-GFP fluorescence was increased or decreased after ACC or AVG treatment, respectively, consistent with the role of PIN3 and PIN7 in ACC-elevated transport. ACC treatment abolished a localized depletion of fluorescence of PIN3- and PIN7-GFP, normally found below the site of primordia formation. These results suggest that ACC treatment increased PIN3 and PIN7 expression, resulting in elevated auxin transport, which prevented the localized accumulation of auxin needed to drive lateral root formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/biosíntesis , Ácidos Indolacéticos/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal
5.
Plant J ; 61(1): 3-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19793078

RESUMEN

In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato (Solanum lycopersicum) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening -Nr (Never ripe), gr (green ripe), nor (non ripening), and rin (ripening inhibitor) - have enhanced lateral root formation. In contrast, the epi (epinastic) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene-auxin crosstalk.


Asunto(s)
Aminoácidos Cíclicos/farmacología , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
6.
Plant Cell ; 21(7): 1972-91, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19602625

RESUMEN

Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de la Membrana/fisiología , Raíces de Plantas/crecimiento & desarrollo , Apomorfina/análogos & derivados , Apomorfina/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Microscopía Confocal , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
7.
Plant Physiol ; 150(2): 722-35, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19363095

RESUMEN

Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We characterized the auxin transport and gravitropic phenotypes of the pinoid-9 (pid-9) mutant of Arabidopsis (Arabidopsis thaliana) and tested the hypothesis that phosphorylation mediated by PID kinase and dephosphorylation regulated by the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1) protein might antagonistically regulate root auxin transport and gravity response. Basipetal indole-3-acetic acid transport and gravitropism are reduced in pid-9 seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor staurosporine phenocopies the reduced auxin transport and gravity response of pid-9, while pid-9 is resistant to inhibition by staurosporine. Staurosporine and the phosphatase inhibitor, cantharidin, delay the asymmetric expression of DR5revGFP (green fluorescent protein) at the root tip after gravistimulation. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine and cantharidin, respectively. The pid-9 rcn1 double mutant has a more rapid gravitropic response than rcn1. These data are consistent with a reciprocal regulation of gravitropism by RCN1 and PID. Furthermore, the effect of staurosporine is lost in pinformed2 (pin2). Our data suggest that reduced PID kinase function inhibits gravitropism and basipetal indole-3-acetic acid transport. However, in contrast to PID overexpression studies, we observed wild-type asymmetric membrane distribution of the PIN2 protein in both pid-9 and wild-type root tips, although PIN2 accumulates in endomembrane structures in pid-9 roots. Similarly, staurosporine-treated plants expressing a PIN2GFP fusion exhibit endomembrane accumulation of PIN2GFP, but no changes in membrane asymmetries were detected. Our data suggest that PID plays a limited role in root development; loss of PID activity alters auxin transport and gravitropism without causing an obvious change in cellular polarity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/efectos de los fármacos , Transporte Biológico , Cantaridina/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Polaridad Celular/efectos de los fármacos , Gravitación , Gravitropismo/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/metabolismo , Estaurosporina/farmacología , Supresión Genética/efectos de los fármacos
8.
PLoS Genet ; 2(11): e202, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-17121469

RESUMEN

The Arabidopsis transcription factor HY5 controls light-induced gene expression downstream of photoreceptors and plays an important role in the switch of seedling shoots from dark-adapted to light-adapted development. In addition, HY5 has been implicated in plant hormone signaling, accounting for the accelerated root system growth phenotype of hy5 mutants. Mutants in the close HY5 homolog HYH resemble wild-type, despite the largely similar expression patterns and levels of HY5 and HYH, and the functional equivalence of the respective proteins. Moreover, the relative contribution of HYH to the overall activity of the gene pair is increased by an alternative HYH transcript, which encodes a stabilized protein. Consistent with the enhanced root system growth observed in hy5 loss-of-function mutants, constitutively overexpressed alternative HYH inhibits root system growth. Paradoxically, however, in double mutants carrying hy5 and hyh null alleles, the hy5 root growth phenotype is suppressed rather than enhanced. Even more surprisingly, compared to wild-type, root system growth is diminished in hy5 hyh double mutants. In addition, the double mutants display novel shoot phenotypes that are absent from either single mutant. These include cotyledon fusions and defective vasculature, which are typical for mutants in genes involved in the transcriptional response to the plant hormone auxin. Indeed, many auxin-responsive and auxin signaling genes are misexpressed in hy5 mutants, and at a higher number and magnitude in hy5 hyh mutants. Therefore, auxin-induced transcription is constitutively activated at different levels in the two mutant backgrounds. Our data support the hypothesis that the opposite root system phenotypes of hy5 single and hy5 hyh double mutants represent the morphological response to a quantitative gradient in the same molecular process, that is gradually increased constitutive auxin signaling. The data also suggest that HY5 and HYH are important negative regulators of auxin signaling amplitude in embryogenesis and seedling development.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Portadoras/genética , Ácidos Indolacéticos/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , Empalme Alternativo/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Raíces de Plantas/citología , Brotes de la Planta/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
9.
Plant Physiol ; 140(4): 1384-96, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16489132

RESUMEN

Plant organs change their growth direction in response to reorientation relative to the gravity vector. We explored the role of ethylene in Arabidopsis (Arabidopsis thaliana) root gravitropism. Treatment of wild-type Columbia seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC) reduced root elongation and gravitropic curvature. The ethylene-insensitive mutants ein2-5 and etr1-3 had wild-type root gravity responses, but lacked the growth and gravity inhibition by ACC found in the wild type. We examined the effect of ACC on tt4(2YY6) seedlings, which have a null mutation in the gene encoding chalcone synthase, the first enzyme in flavonoid synthesis. The tt4(2YY6) mutant makes no flavonoids, has elevated indole-3-acetic acid transport, and exhibits a delayed gravity response. Roots of tt4(2YY6), the backcrossed line tt4-2, and two other tt4 alleles had wild-type sensitivity to growth inhibition by ACC, whereas the root gravitropic curvature of these tt4 alleles was much less inhibited by ACC than wild-type roots, suggesting that ACC may reduce gravitropic curvature by altering flavonoid synthesis. ACC treatment induced flavonoid accumulation in root tips, as judged by a dye that becomes fluorescent upon binding flavonoids in wild type, but not in ein2-5 and etr1-3. ACC also prevented a transient peak in flavonoid synthesis in response to gravity. Together, these experiments suggest that elevated ethylene levels negatively regulate root gravitropism, using EIN2- and ETR1-dependent pathways, and that ACC inhibition of gravity response occurs through altering flavonoid synthesis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Etilenos/metabolismo , Flavonoides/metabolismo , Gravitropismo/fisiología , Aciltransferasas/genética , Aminoácidos Cíclicos/metabolismo , Aminoácidos Cíclicos/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Microscopía Confocal , Modelos Biológicos , Mutación , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...