Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38137975

RESUMEN

Candida albicans is a common pathogenic fungus that presents a challenge to healthcare facilities. It can switch between a yeast cell form that diffuses through the bloodstream to colonize internal organs and a filamentous form that penetrates host mucosa. Understanding the pathogen's strategies for environmental adaptation and, ultimately, survival, is crucial. As a complementary study, herein, a multi-omics analysis was performed using high-resolution timsTOF MS to compare the proteomes and metabolomes of Wild Type (WT) Candida albicans (strain DK318) grown on agar plates versus liquid media. Proteomic analysis revealed a total of 1793 proteins and 15,013 peptides. Out of the 1403 identified proteins, 313 proteins were significantly differentially abundant with a p-value < 0.05. Of these, 156 and 157 proteins were significantly increased in liquid and solid media, respectively. Metabolomics analysis identified 192 metabolites in total. The majority (42/48) of the significantly altered metabolites (p-value 0.05 FDR, FC 1.5), mainly amino acids, were significantly higher in solid media, while only 2 metabolites were significantly higher in liquid media. The combined multi-omics analysis provides insight into adaptative morphological changes supporting Candida albicans' life cycle and identifies crucial virulence factors during biofilm formation and bloodstream infection.

2.
Appl Microbiol Biotechnol ; 107(16): 5225-5240, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358811

RESUMEN

Sponges are habitats for a diverse community of microorganisms. Sponges provide shelter, whereas microbes provide a complementary defensive mechanism. Here, a symbiotic bacterium, identified as Bacillus spp., was isolated from a marine sponge following culture enrichment. Fermentation-assisted metabolomics using thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) indicated that marine simulated nutrition and temperature was the optimum in metabolite production represented by the highest number of metabolites and the diverse chemical classes when compared to other culture media. Following large-scale culture in potato dextrose broth (PDB) and dereplication, compound M1 was isolated and identified as octadecyl-1-(2',6'-di-tert-butyl-1'-hydroxyphenyl) propionate. M1, at screening concentrations up to 10 mg/ml, showed no activity against prokaryotic bacteria including Staphylococcus aureus and Escherichia coli, while 1 mg/ml of M1 was sufficient to cause a significant killing effect on eukaryotic cells including Candida albicans, Candida auris, and Rhizopus delemar fungi and different mammalian cells. M1 exhibited MIC50 0.97 ± 0.006 and 7.667 ± 0.079 mg/ml against C. albicans and C. auris, respectively. Like fatty acid esters, we hypothesize that M1 is stored in a less harmful form and upon pathogenic attack is hydrolyzed to a more active form as a defensive metabolite. Subsequently, [3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid] (DTBPA), the hydrolysis product of M1, exhibited ~ 8-fold and 18-fold more antifungal activity than M1 against C. albicans and C. auris, respectively. These findings indicated the selectivity of that compound as a defensive metabolite towards the eukaryotic cells particularly the fungi, a major infectious agent to sponges. Metabolomic-assisted fermentation can provide a significant understanding of a triple marine-evolved interaction. KEY POINTS: • Bacillus species, closely related to uncultured Bacillus, is isolated from Gulf marine sponge • Metabolomic-assisted fermentations showed diverse metabolites • An ester with a killing effect against eukaryotes but not prokaryotes is isolated.


Asunto(s)
Bacillus , Poríferos , Animales , Bacterias/metabolismo , Antifúngicos/química , Evolución Biológica , Candida albicans , Mamíferos
3.
Front Microbiol ; 14: 1336856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318129

RESUMEN

Multidrug-resistant bacterial infections present a serious challenge to global health. In addition to the spread of antibiotic resistance, some bacteria can form persister cells which are tolerant to most antibiotics and can lead to treatment failure or relapse. In the present work, we report the discovery of a new class of small molecules with potent antimicrobial activity against Gram-positive bacteria and moderate activity against Gram-negative drug-resistant bacterial pathogens. The lead compound SIMR 2404 had a minimal inhibitory concentration (MIC) of 2 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate Staphylococcus aureus (VISA). The MIC values against Gram-negative bacteria such as Escherichia coli and Actinobacteria baumannii were between 8-32 µg/mL. Time-kill experiments show that compound SIMR 2404 can rapidly kill tested bacteria. Compound SIMR 2404 was also found to rapidly kill MRSA persisters which display high levels of tolerance to conventional antibiotics. In antibiotic evolution experiments, MRSA quickly developed resistance to ciprofloxacin but failed to develop resistance to compound SIMR 2404 even after 24 serial passages. Compound SIMR 2404 was not toxic to normal human fibroblast at a concentration of 4 µg/mL which is twice the MIC concentration against MRSA. However, at a concentration of 8 µg/mL or higher, it showed cytotoxic activity indicating that it is not ideal as a candidate against Gram-negative bacteria. The acceptable toxicity profile and rapid antibacterial activity against MRSA highlight the potential of these molecules for further studies as anti-MRSA agents.

4.
Front Microbiol ; 13: 823394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178043

RESUMEN

The serious challenge posed by multidrug-resistant bacterial infections with concomitant treatment failure and high mortality rates presents an urgent threat to the global health. We herein report the discovery of a new class of potent antimicrobial compounds that are highly effective against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The compounds were efficiently synthesized in one-pot employing a cascade of Groebke-Blackburn-Bienaymé and aza-Michael addition reactions. Phenotypic screening of the pilot library against various bacterial species including methicillin-sensitive and MRSA strains, has identified potent chemotypes with minimal inhibitory concentrations (MIC) of 3.125-6.25 µg/ml. The most potent compounds were fast-acting at eradicating exponentially growing MRSA, with killing achieved after 30 min of exposure to the compounds. They were also able to kill MRSA persister cells which are tolerant to most available medications. Microscopic analysis using fluorescence microscope and atomic force microscope indicate that these compounds lead to disruption of bacterial cell envelopes. Most notably, bacterial resistance toward these compounds was not observed after 20 serial passages in stark contrast to the significant resistance developed rapidly upon exposure to a clinically relevant antibiotic. Furthermore, the compounds did not induce significant hemolysis to human red blood cells. In vivo safety studies revealed a high safety profile of these motifs. These small molecules hold a promise for further studies and development as new antibacterial agents against MRSA infections.

5.
Kidney Int Rep ; 6(5): 1254-1264, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34013103

RESUMEN

INTRODUCTION: Chronic kidney disease (CKD) is a risk factor for herpes zoster (HZ) infection. Few studies have examined HZ vaccine (HZV) in this population. We conducted a systematic review and meta-analysis investigating the efficacy and safety of HZV in patients with renal disease (CKD, dialysis, and transplant). METHODS: MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases (up to May 2020) were searched for randomized controlled trials and nonrandomized controlled studies evaluating HZV in patients with CKD for effectiveness and adverse event risks. Studies without a control group (placebo or no vaccine) were excluded. Extraction of prespecified data and risk of bias assessments using the Newcastle-Ottawa scale for cohort studies and the Cochrane Risk of Bias Tool for randomized controlled trials were done by 3 authors. Random-effects meta-analysis was used to generate pooled treatment effects and 95% confidence intervals. RESULTS: Included were 404,561 individuals from 8 studies (3 randomized controlled trials and 5 nonrandomized). All 8 studies examined HZ as an outcome, with 3 reporting adverse events. Risk of HZ was lower in patients who received HZV compared with controls (hazard ratio, 0.55; 95% confidence interval, 0.37-0.82; P < 0.01); however, heterogeneity was high (I 2 = 88%, P < 0.01). There was no significant difference in adverse events associated with HZV (hazard ratio, 1.03; 95% confidence interval, 0.54-1.28; P = 0.8). CONCLUSIONS: HZV compared with control significantly lowers the risk of HZ without an increase in adverse events in CKD patients. However, significant heterogeneity was present. HZV should be actively considered in CKD patients because the prevalence of HZ is higher in this population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...