Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Viruses ; 15(2)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851772

RESUMEN

The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas
2.
Nat Struct Mol Biol ; 30(1): 81-90, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604498

RESUMEN

The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Polímeros , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Polímeros/metabolismo , Proteínas Portadoras/metabolismo , Transporte de Proteínas
3.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35233549

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Vacunas de Partículas Similares a Virus/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Liposomas , Macaca fascicularis , Masculino , Pandemias/prevención & control , Células TH1/inmunología , Resultado del Tratamiento , Vacunas de Partículas Similares a Virus/inmunología , Células Vero
4.
Vaccines (Basel) ; 9(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34358165

RESUMEN

Stabilization of the HIV-1 Envelope glycoprotein trimer (Env) in its native pre-fusion closed conformation is regarded as one of several requirements for the induction of neutralizing antibody (nAb) responses, which, in turn, will most likely be a prerequisite for the development of an efficacious preventive vaccine. Here, we systematically analyzed how the stepwise stabilization of a clade C consensus (ConC) Env immunogen impacts biochemical and biophysical protein traits such as antigenicity, thermal stability, structural integrity, and particle size distribution. The increasing degree of conformational rigidification positively correlates with favorable protein characteristics, leading to optimized homogeneity of the protein preparations, increased thermal stability, and an overall favorable binding profile of structure-dependent broadly neutralizing antibodies (bnAbs) and non-neutralizing antibodies (non-nAbs). We confirmed that increasing the structural integrity and stability of the Env trimers positively correlates with the quality of induced antibody responses by the immunogens. These and other data contribute to the selection of ConCv5 KIKO as novel Env immunogens for use within the European Union's H2020 Research Consortium EHVA (European HIV Alliance) for further preclinical analysis and phase 1 clinical development.

5.
Pathogens ; 11(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35055970

RESUMEN

The S. mansoni adult worm n-butanol extract (Sm-AWBE) has been previously shown to contain specific S. mansoni antigens that have been used for immunodiagnosis of schistosomiasis in solid phase alkaline phosphatase immunoassay (APIA) and western blot (WB) analyses. Sm-AWBE was also used in immunoprotection studies against a fatal live-cercariae challenge in experimental mouse vaccination (~43% protection). The Sm-AWBE fraction was prepared by mixing adult worm membranous suspensions with aqueous-saturated n-butanol, centrifuging and recovering n-butanol-resistant proteins in the aqueous phase. Here we report a preliminary identification of Sm-AWBE protein components as revealed from a qualitative proteomic study after processing Sm-AWBE by 1D-gel electrophoresis, in-gel and in-solution tryptic digestions, and mass spectrometry analyses. We identified 33 proteins in Sm-AWBE, all previously known S. mansoni proteins and antigens; among them, immunomodulatory proteins and proteins mostly involved in host-parasite interactions. About 81.8% of the identified Sm-AWBE proteins are antigenic. STRING analysis showed a set of Sm-AWBE proteins configuring a small network of interactive proteins and a group of proteins without interactions. Functional groups of proteins included muscle contraction, antioxidant, GPI-anchored phosphoesterases, regulatory 14-3-3, various enzymes and stress proteins. The results widen the possibilities to design novel antigen combinations for better diagnostic and immunoprotective strategies for schistosomiasis control.

6.
Viruses ; 12(11)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114242

RESUMEN

HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Vacunas contra el SIDA/inmunología , Animales , Epítopos/inmunología , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/genética , VIH-1/inmunología , Humanos , Ratones , Mutación
7.
Biochem Biophys Res Commun ; 524(1): 198-204, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31983430

RESUMEN

Thick filaments from some striated muscles are regulated by phosphorylation of myosin regulatory light chains (RLCs). A tarantula thick filament quasi-atomic model achieved by cryo-electron microscopy has advanced our understanding on how this regulation occurs. In native thick filaments, an asymmetric intramolecular interaction between the actin-binding region of one myosin head ("blocked") and the converter region of the other head ("free") switches both heads off, establishing the myosin interacting-heads motif (IHM). This structural finding, together with motility assays, sequence analysis, and mass spectrometry (MS) observations have suggested a cooperative phosphorylation activation (CPA) mechanism for thick filament activation. In the CPA mechanism, some myosin free heads are phosphorylated constitutively in Ser35 by protein kinase C (PKC) and -under Ca2+ control - others (free or blocked) heads temporally on Ser45 by myosin light chain kinase (MLCK), in a way that explains both force development and post-tetanic potentiation in tarantula striated muscle. We tested this model using MS to verify if Ca2+-activation phosphorylates de novo un-phosphorylated Ser35 heads. For this purpose, we standardized an approach based on 18O isotopic ATP labeling to accurately detect by MS-MS the RLC phosphorylation under Ca2+-activation. MS spectra showed de novo18O incorporation only on Ser45 but not on Ser35. As the constitutive Ser35 phosphorylation cannot be dephosphorylated, this result suggests that the number of RLCs on free heads with constitutively phosphorylated Ser35 does remain constant on Ca2+-activation supporting that the myosin has a basal activation and force modulation or potentiation is controlled by MLCK Ser45 phosphorylation.


Asunto(s)
Marcaje Isotópico , Miosinas/metabolismo , Isótopos de Oxígeno/metabolismo , Serina/metabolismo , Arañas/metabolismo , Secuencia de Aminoácidos , Animales , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosforilación
8.
Sci Adv ; 5(4): eaau7198, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30989108

RESUMEN

Many cellular processes such as endosomal vesicle budding, virus budding, and cytokinesis require extensive membrane remodeling by the endosomal sorting complex required for transport III (ESCRT-III). ESCRT-III protein family members form spirals with variable diameters in vitro and in vivo inside tubular membrane structures, which need to be constricted to proceed to membrane fission. Here, we show, using high-speed atomic force microscopy and electron microscopy, that the AAA-type adenosine triphosphatase VPS4 constricts and cleaves ESCRT-III CHMP2A-CHMP3 helical filaments in vitro. Constriction starts asymmetrically and progressively decreases the diameter of CHMP2A-CHMP3 tubular structure, thereby coiling up the CHMP2A-CHMP3 filaments into dome-like end caps. Our results demonstrate that VPS4 actively constricts ESCRT-III filaments and cleaves them before their complete disassembly. We propose that the formation of ESCRT-III dome-like end caps by VPS4 within a membrane neck structure constricts the membrane to set the stage for membrane fission.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/química , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , Hidrólisis , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , ATPasas de Translocación de Protón Vacuolares/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(9): E1991-E2000, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29444861

RESUMEN

Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca2+ binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.


Asunto(s)
Miosina Tipo II/antagonistas & inhibidores , Actinas/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Animales , Evolución Biológica , Calcio/química , Línea Celular , Biología Computacional , Microscopía por Crioelectrón , Dictyostelium , Procesamiento de Imagen Asistido por Computador , Insectos , Microscopía Electrónica , Miosina Tipo II/química , Fosforilación , Poríferos , Unión Proteica , Schizosaccharomyces , Escifozoos , Anémonas de Mar , Pavos
10.
Biophys Rev ; 10(5): 1465-1477, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28871552

RESUMEN

Tarantula's leg muscle thick filament is the ideal model for the study of the structure and function of skeletal muscle thick filaments. Its analysis has given rise to a series of structural and functional studies, leading, among other things, to the discovery of the myosin interacting-heads motif (IHM). Further electron microscopy (EM) studies have shown the presence of IHM in frozen-hydrated and negatively stained thick filaments of striated, cardiac, and smooth muscle of bilaterians, most showing the IHM parallel to the filament axis. EM studies on negatively stained heavy meromyosin of different species have shown the presence of IHM on sponges, animals that lack muscle, extending the presence of IHM to metazoans. The IHM evolved about 800 MY ago in the ancestor of Metazoa, and independently with functional differences in the lineage leading to the slime mold Dictyostelium discoideum (Mycetozoa). This motif conveys important functional advantages, such as Ca2+ regulation and ATP energy-saving mechanisms. Recent interest has focused on human IHM structure in order to understand the structural basis underlying various conditions and situations of scientific and medical interest: the hypertrophic and dilated cardiomyopathies, overfeeding control, aging and hormone deprival muscle weakness, drug design for schistosomiasis control, and conditioning exercise physiology for the training of power athletes.

11.
J Struct Biol ; 193(1): 45-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26592473

RESUMEN

Single particle analysis is widely used for three-dimensional reconstruction of helical filaments. Near-atomic resolution has been obtained for several well-ordered filaments. However, it is still a challenge to achieve high resolution for filaments with flexible subunits and a large axial rise per subunit relative to pixel size. Here, we describe an approach that improves the resolution in such cases. In filaments with a large axial rise, many segments must be shifted a long distance along the filament axis to match with a reference projection, potentially causing loss of alignment accuracy and hence resolution. In our study of myosin filaments, we overcame this problem by pre-determining the axial positions of myosin head crowns within segments to decrease the alignment error. In addition, homogeneous, well-ordered segments were selected from the raw data set by checking the assigned azimuthal rotation angle of segments in each filament against those expected for perfect helical symmetry. These procedures improved the resolution of the filament reconstruction from 30 Å to 13 Å. This approach could be useful in other helical filaments with a large axial rise and/or flexible subunits.


Asunto(s)
Microscopía por Crioelectrón/métodos , Citoesqueleto/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Contracción Muscular/fisiología , Arañas , Difracción de Rayos X
12.
Parasitol Int ; 65(3): 191-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26709076

RESUMEN

Adult Schistosoma mansoni parasites have the capacity to degrade ingested host hemoglobin and other host plasma proteins by using a series of gut proteolytic enzymes, including cathepsin B; this enzyme is released to the host intravascular environment during regurgitations of adult worms. Cathepsin B becomes thus a circulating parasite component that has been shown to be specifically recognized as the Sm31 antigen by antibodies present in most S. mansoni infected patients. Taking advantage of this immunological property, we attempted here to immunocapture Sm31 from sera of infected patients using specific polyclonal rabbit antibodies raised against a highly enriched preparation of Sm31 and detect its intrinsic proteolytic activity using a previously described solid-phase procedure called Cysteine Protease Immuno Assay (CPIA). To produce highly specific anti-Sm31/cathepsin B antibodies, cathepsin B (Sm31 or SmCB) was enriched more than 3000-folds from an adult worm preparation using a series of conventional biochemical steps including ion exchange and affinity chromatography. Anti-cathepsin B antibodies were generated by immunizing rabbits with the enriched cathepsin B fraction; these antibodies recognized a band of Mr.~31 kDa in Western-blot (WB) analysis of this fraction and were able to capture, in a modified CPIA procedure, Sm31/SmCB present in sera from infected Venezuelan patients living in low endemic areas for schistosomiasis. CPIA showed 100% sensitivity and 100% specificity; representing a new diagnostic tool to detect circulating Sm31 antigen in actual infections.


Asunto(s)
Anticuerpos Antihelmínticos/inmunología , Antígenos Helmínticos/inmunología , Cisteína Endopeptidasas/inmunología , Proteínas del Helminto/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Animales , Humanos , Conejos , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/diagnóstico , Sensibilidad y Especificidad
13.
Proc Natl Acad Sci U S A ; 112(42): E5660-8, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26443857

RESUMEN

Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.


Asunto(s)
Músculo Liso/metabolismo , Miosinas/metabolismo , Schistosoma mansoni/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía Electrónica , Datos de Secuencia Molecular , Músculo Liso/ultraestructura , Miosinas/química , Filogenia , Homología de Secuencia de Aminoácido
14.
Biophys J ; 105(9): 2114-22, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24209856

RESUMEN

Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45. Our goal was to test this model of phosphorylation. Mass spectrometry of quickly frozen, intact muscles showed that only Ser-35 was phosphorylated in the relaxed state. The location of this constitutively phosphorylated Ser-35 was analyzed by immunofluorescence, using antibodies specific for unphosphorylated or phosphorylated Ser-35. In the relaxed state, myofibrils were labeled by anti-pSer-35 but not by anti-Ser-35, whereas in rigor, labeling was similar with both. This suggests that only pSer-35 is exposed in the relaxed state, while in rigor, Ser-35 is also exposed. In the interacting-head motif of relaxed filaments, only the free head RLCs are exposed, suggesting that the constitutive pSer-35 is on the free heads, consistent with the proposed mechanism.


Asunto(s)
Arácnidos , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Miosinas/química , Miosinas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/aislamiento & purificación , Glicerol/química , Modelos Moleculares , Datos de Secuencia Molecular , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosinas/aislamiento & purificación , Fosforilación , Proteína Quinasa C/metabolismo , Serina/metabolismo , Urea/química
15.
PLoS Negl Trop Dis ; 7(6): e2254, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818994

RESUMEN

BACKGROUND: Schistosomiasis continues to be one of the most prevalent parasitic diseases in the world. Despite the existence of a highly effective antischistosome drug, the disease is spreading into new areas, and national control programs do not arrive to complete their tasks particularly in low endemic areas. The availability of a vaccine could represent an additional component to chemotherapy. Experimental vaccination studies are however necessary to identify parasite molecules that would serve as vaccine candidates. In the present work, C57BL/6 female mice were subcutaneously immunized with an n-butanol extract of the adult worm particulate membranous fraction (AWBE) and its protective effect against a S. mansoni challenge infection was evaluated. METHODOLOGY AND FINDINGS: Water-saturated n-butanol release into the aqueous phase a set of membrane-associated (glyco)proteins that are variably recognized by antibodies in schistosome-infected patients; among the previously identified AWBE antigens there is Alkaline Phosphatase (SmAP) which has been associated with resistance to the infection in mice. As compared to control, a significantly lower number of perfuse parasites was obtained in the immunized/challenged mouse group (P<0.05, t test); and consequently, a lower number of eggs and granulomas (with reduced sizes), overall decreasing pathology. Immunized mice produced high levels of sera anti-AWBE IgG recognizing antigens of ∼190-, 130-, 98-, 47-, 28-23, 14-, and 9-kDa. The ∼130-kDa band (the AP dimer) exhibited in situ SmAP activity after addition of AP substrate and the activity was not apparently inhibited by host antibodies. A preliminary proteomic analysis of the 25-, 27-, and 28-kDa bands in the immunodominant 28-23 kDa region suggested that they are composed of actin. CONCLUSIONS: Immunization with AWBE induced the production of specific antibodies to various adult worm membrane molecules (including AP) and a partial (43%) protection against a challenging S. mansoni infection by mechanism(s) that still has to be elucidated.


Asunto(s)
Antígenos Helmínticos/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/prevención & control , Vacunación/métodos , Animales , Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos C57BL , Esquistosomiasis mansoni/inmunología
16.
J Mol Biol ; 414(1): 44-61, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21959262

RESUMEN

Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high-resolution structure is known. In the relaxed state, tarantula RLCs are ~50% non-phosphorylated and 50% mono-phosphorylated, while on activation, mono-phosphorylation increases, and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphorylation occurs on Ser35, while Ca(2+)-activated phosphorylation is on Ser45, both located near the RLC N-terminus. The sequences around these serines suggest that they are the targets for protein kinase C and myosin light chain kinase (MLCK), respectively. The atomic model of the tarantula filament shows that the two myosin heads ("free" and "blocked") are in different environments, with only the free head serines readily accessible to kinases. Thus, protein kinase C Ser35 mono-phosphorylation in relaxed filaments would occur only on the free heads. Structural considerations suggest that these heads are less strongly bound to the filament backbone and may oscillate occasionally between attached and detached states ("swaying" heads). These heads would be available for immediate actin interaction upon Ca(2)(+) activation of the thin filaments. Once MLCK becomes activated, it phosphorylates free heads on Ser45. These heads become fully mobile, exposing blocked head Ser45 to MLCK. This would release the blocked heads, allowing their interaction with actin. On this model, twitch force would be produced by rapid interaction of swaying free heads with activated thin filaments, while prolonged exposure to Ca(2+) on tetanus would recruit new MLCK-activated heads, resulting in force potentiation.


Asunto(s)
Actinas/metabolismo , Músculos/metabolismo , Miosinas/metabolismo , Actinas/química , Animales , Calcio/metabolismo , Ensayos de Migración Celular , Microscopía Electrónica , Modelos Moleculares , Músculos/química , Músculos/ultraestructura , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosinas/química , Fosforilación , Serina/química , Serina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Arañas
17.
Arch. venez. farmacol. ter ; 20(1): 63-68, 2001. graf
Artículo en Español | LILACS | ID: lil-340960

RESUMEN

El metabolismo oxidativo es el mecanismo de mayor relevancia involucrado en la producción de energía en los animales superiores. La falta de control en este proceso conduce a una sobreproducción de radicales libres de oxígeno, los cuales pueden ocasionar daño a las estructuras celulares. El malondialdehído (MDA) es un marcador de la peroxidación lipídica, cuya producción puede ser compensada por el óxido nítrico (NO), vitamina C y glutatión reducido (GSH) como integrantes del sistema antioxidante del organismo. El objetivo de este estudio fue establecer la influencia de la edad y el sexo en el sistema oxidante/antioxidante en un grupo de sujetos sanos. El MDA fue determinado como producto del ácido tiobarbitúrico, el NO como nitritos totales, la vitamina C oxidada y reducida, utilizando el método de Scharz y Williams y el GSH mediante kit colorimétrico del GSH-400 Assaytm. No se observaron diferencias significativas en las concentraciones de oxidante (MDA), así como tampoco en el sistema antioxidante (NO, vitamina C, GSH) cuando se compararon sujetos de 13 a 19 años con sujetos de 20 a 38 años. Sólo se encontró diferencia significativa al analizar los valores de NO entre sexos, presentando las mujeres un valor significativamente superior (p<0,012). Estos resultados sugieren que el MDA, NO, vitamina C y GSH no cambian en el intervalo de edad estudiado (13-38 años) y que la concentración de NO, sólo se ve afectada por el sexo


Asunto(s)
Humanos , Masculino , Adolescente , Adulto , Femenino , Persona de Mediana Edad , Ácido Ascórbico , Malondialdehído/metabolismo , Óxido Nítrico , Venezuela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...