Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38542559

RESUMEN

Ketamine is one of the most commonly abused drugs globally, posing a severe risk to social stability and human health, not only it is being used for recreational purposes, but this tasteless, odourless, and colourless drug also facilitates sexual assaults when it is mixed with drinks. Ketamine abuse is a threat for safety, and this misuse is one of the main uses of the drug. The crucial role of ketamine detection is evident in its contributions to forensic investigations, law enforcement, drug control, workplace integrity, and public health. Electrochemical sensors have gained considerable interest among researchers due to their various advantages, such as low cost and specificity, and particularly screen-printed paper-based electrode (SPBE) biosensors have gained attention. Here, we reported an ePAD (electrochemical paper-based analytical device) for detecting the recreational drug ketamine. The advantages of using a paper-based electrode are that it reduces the electrode's production costs and is disposable and environmentally friendly. At the same time, nanographite sheets (NGSs) assisted in amplifying the signals generated in the cyclic voltammetry system when ketamine was present. This ePAD was developed by immobilizing a ketamine aptamer on NGS electrodes. The characterization of proper synthesized NGSs was performed by Scanning Electron Microscopy (SEM), XRD (X-ray Diffraction), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy. Electrochemical techniques, including cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were employed to validate the results and confirm each attachment. Furthermore, the versatility of the proposed sensor was explored in both alcoholic and non-alcoholic beverages. The developed sensor showed a low LOD of about 0.01 µg/mL, and the linear range was between 0.01 and 5 µg/mL. This approach offers a valid diagnostic technique for onsite service with minimal resources. This cost effective and portable platform offers desirable characteristics like sensitivity and selectivity and can also be used for POC (point of care) testing to help in the quick identification of suspicious samples and for testing at trafficking sites, amusement parks, and by the side of the road.

2.
Biosensors (Basel) ; 13(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887127

RESUMEN

Illicit drug misuse has become a widespread issue that requires continuous drug monitoring and diagnosis. Wearable electrochemical drug detection devices possess the potential to function as potent screening instruments in the possession of law enforcement personnel, aiding in the fight against drug trafficking and facilitating forensic investigations conducted on site. These wearable sensors are promising alternatives to traditional detection methods. In this study, we present a novel wearable electrochemical glove-based analytical device (eGAD) designed especially for detecting the club drug, methamphetamine. To develop this sensor, we immobilized meth aptamer onto silver nanoparticle (AgNPs)-modified electrodes that were printed onto latex gloves. The characteristics of AgNPs, including their shape, size and purity were analysed using FTIR, SEM and UV vis spectrometry, confirming the successful synthesis. The developed sensor shows a 0.1 µg/mL limit of detection and 0.3 µg/mL limit of quantification with a linear concentration range of about 0.01-5 µg/mL and recovery percentages of approximately 102 and 103%, respectively. To demonstrate its applicability, we tested the developed wearable sensor by spiking various alcoholic and non-alcoholic drink samples. We found that the sensor remains effective for 60 days, making it a practical option with a reasonable shelf-life. The developed sensor offers several advantages, including its affordability, ease of handling and high sensitivity and selectivity. Its portable nature makes it an ideal tool for rapid detection of METH in beverages too.


Asunto(s)
Nanopartículas del Metal , Metanfetamina , Dispositivos Electrónicos Vestibles , Nanopartículas del Metal/química , Plata/química , Electrodos , Técnicas Electroquímicas/métodos
3.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37420685

RESUMEN

We present the development of an electrochemical paper-based analytical device (ePAD) for the detection of methamphetamine. Methamphetamine is a stimulant that young people use as an addictive narcotic, and it must be detected quickly since it may be hazardous. The suggested ePAD has the advantages of being simple, affordable, and recyclable. This ePAD was developed by immobilizing a methamphetamine-binding aptamer onto Ag-ZnO nanocomposite electrodes. The Ag-ZnO nanocomposites were synthesized via a chemical method and were further characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-vis spectrometry in terms of their size, shape, and colloidal activity. The developed sensor showed a limit of detection of about 0.1 µg/mL, with an optimum response time of about 25 s, and its extensive linear range was between 0.01 and 6 µg/mL. The application of the sensor was recognized by spiking different beverages with methamphetamine. The developed sensor has a shelf life of about 30 days. This cost-effective and portable platform might prove to be highly successful in forensic diagnostic applications and will benefit those who cannot afford expensive medical tests.


Asunto(s)
Metanfetamina , Nanocompuestos , Óxido de Zinc , Humanos , Adolescente , Óxido de Zinc/química , Plata/química , Nanocompuestos/química , Electrodos , Técnicas Electroquímicas/métodos
4.
ACS Appl Bio Mater ; 6(4): 1368-1379, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36926800

RESUMEN

Integrating electronic applications with paper, placed next to or below printed images or graphics, can further expand the possible uses of paper substrates. Consuming paper as a substrate in the field of electronics can lead to significant innovations toward papertronics applications as paper comprises various advantages like being disposable, inexpensive, biodegradable, easy to handle, simple to use, and easily available. All of these advantages will definitely spur the advancement of the electronics field, but unfortunately, putting electronics on paper is not an easy task because, compared to plastics, the paper surface is not just rough but also porous. For example, in the case of lateral flow assay testing the sensor response is delayed if the pore size of the paper is enormous. This might be a disadvantage for most electrical devices printed directly on paper. Still, some methods make it compatible when fit with a rough, absorbent surface of the paper. Building electronic devices on a standard paper substrate have sparked much interest because of its lightweight, environmental friendliness, minimal cost, and simple fabrication. A slew of improvements have been achieved in recent years to make paper electronics perform better in various applications, including transistors, batteries, and displays. In addition, flexible electronics have gained much interest in human-machine interaction and wireless sensing. This review briefly examines the origins and fabrication of paper electronics and then moves on to applications and exciting possible paths for paper-based electronics.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Configuración de Recursos Limitados , Electrónica , Suministros de Energía Eléctrica
5.
Micromachines (Basel) ; 13(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36363867

RESUMEN

A notable diagnostic for the detection of hemolytic diseases is bilirubin, a by-product of haemoglobin breakdown. The concentration of bilirubin ranges from 0.3 to 1.9 mg in 100 mL of blood. Low blood bilirubin levels are associated with a greater risk of coronary heart disease and anaemia. Hyperbilirubinemia results from a serum bilirubin level of more than 2.5 mg/100 mL. Therefore, it is very crucial to check the serum bilirubin level. Analytical equipment for point-of-care testing must be portable, small, and affordable. A unique method is used to detect bilirubin selectively using paper-based screen-printed carbon electrodes that were covalently linked with nanoparticles, that serves as a key biomarker for jaundice. In order to create an electrochemical biosensor, bilirubin oxidase was immobilised on electrodes modified with AgNPs. The morphology of Ag nanoparticles in terms of size and shape was determined using both UV- Vis Spectroscopy and transmission electron microscopy (TEM). The biosensor's analytical response was assessed using potentiostat (Cyclic voltammetry (CV) and linear sweep voltammetry (LSV)). The developed paper-based sensor provided optimum feedback and a broad linear range of 1 to 9 µg/mL for bilirubin, with a lower LOD of 1 µg/mL. Through tests of bilirubin in artificial blood serum, the viability is confirmed. The method that is being used makes it possible to create and use an inexpensive, miniature electrochemical sensor.

6.
Int J Biol Macromol ; 217: 435-448, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35817236

RESUMEN

The virus known as Japanese Encephalitis (JEV) is among the common viral persisting Encephalitis caused by Flavivirus around the Globe, especially in Southeast Asian nations. JEV may be a leading reason for neurological illness in humans, with an estimated 70,000 human cases and 10,000 fatalities per annum. The conventional methods like PRNT (Plaque Reduction Neutralization Test), ELISA (Enzyme-linked immunosorbent assay) RT-PCR (reverse transcription-polymerase chain reaction), and virus isolation are few commercial tests being availed these days, but they have a variety of drawbacks, including being extremely expensive, time-consuming, and requiring expertise. Therefore, researches are being made in the development of improved inexpensive, shorter, sensitive, and time-saving strategies to diagnose the Japanese Encephalitis Virus. A number of these researches encompass the employment of immunosensors, electrochemical sensors and along with the applications of nanotechnology to create highly sensitive detecting device. This review article is based on contemporary breakthroughs in diagnosing Japanese Encephalitis Virus, which are crucial in severing the connection between the propagation of zoonotic disease into the current race, where humans function as dead-end hosts.


Asunto(s)
Técnicas Biosensibles , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Encefalitis Japonesa/diagnóstico , Humanos , Inmunoensayo , Sensibilidad y Especificidad
7.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35684847

RESUMEN

Several illnesses that are chronic and acute are becoming more relevant as the world's aging population expands, and the medical sector is transforming rapidly, as a consequence of which the need for "point-of-care" (POC), identification/detection, and real time management of health issues that have been required for a long time are increasing. Biomarkers are biological markers that help to detect status of health or disease. Biosensors' applications are for screening for early detection, chronic disease treatment, health management, and well-being surveillance. Smart devices that allow continual monitoring of vital biomarkers for physiological health monitoring, medical diagnosis, and assessment are becoming increasingly widespread in a variety of applications, ranging from biomedical to healthcare systems of surveillance and monitoring. The term "smart" is used due to the ability of these devices to extract data with intelligence and in real time. Wearable, implantable, ingestible, and portable devices can all be considered smart devices; this is due to their ability of smart interpretation of data, through their smart sensors or biosensors and indicators. Wearable and portable devices have progressed more and more in the shape of various accessories, integrated clothes, and body attachments and inserts. Moreover, implantable and ingestible devices allow for the medical diagnosis and treatment of patients using tiny sensors and biomedical gadgets or devices have become available, thus increasing the quality and efficacy of medical treatments by a significant margin. This article summarizes the state of the art in portable, wearable, ingestible, and implantable devices for health status monitoring and disease management and their possible applications. It also identifies some new technologies that have the potential to contribute to the development of personalized care. Further, these devices are non-invasive in nature, providing information with accuracy and in given time, thus making these devices important for the future use of humanity.


Asunto(s)
Dispositivos Electrónicos Vestibles , Anciano , Biomarcadores , Manejo de la Enfermedad , Estado de Salud , Humanos , Monitoreo Fisiológico
8.
Environ Sci Pollut Res Int ; 29(6): 8091-8108, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34841487

RESUMEN

Viruses are the potential cause of several diseases including novel corona virus-19, flu, small pox, chicken pox, acquired immunodeficiency syndrome, severe acute respiratory syndrome etc. The objectives of this review article are to summarize the reasons behind the epidemics caused by several emerging viruses and bacteria, how to control the infection and preventive strategies. We have explained the causes of epidemics along with their preventive measures, the impact of lockdown on the health of people and the economy of a country. Several reports have revealed the transmission of infection during epidemic from the contact of an infected person to the public that can be prevented by implementing the lockdown by the government of a country. Though lockdown has been considered as one of the significant parameters to control the diseases, however, it has some negative consequences on the health of people as they can be more prone to other ailments like obesity, diabetes, cardiac problems etc. and drastic decline in the economy of a country. Therefore, the transmission of diseases can be prevented by warning the people about the severity of diseases, avoiding their public transportation, keeping themselves isolated, strictly following the guidelines of lockdown and encouraging regular exercise.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Ejercicio Físico , Humanos , SARS-CoV-2
9.
Chem Eng J ; 414: 128759, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33551668

RESUMEN

The recent outbreak of COVID-19 has created much inconvenience and fear that the virus can seriously affect humans, causing health hazards and death. This pandemic has created much worry and as per the report by World Health Organization (WHO), more than 43 million individuals in 215 countries and territories were affected. People around the world are still struggling to overcome the problems associated with this pandemic. Of all the available methods, reverse-transcriptase polymerase chain reaction (RT-PCR) has been widely practiced for the pandemic detection even though several diagnostic tools are available having varying accuracy and sensitivity. The method offers many advantages making it a life-saving tool, but the method has the limitation of transporting to the nearest pathology lab, thus limiting its application in resource limited settings. This has a risen a crucial need for point-of-care devices for on-site detection. In this venture, biosensors have been used, since they can be applied immediately at the point-of-care. This review will discuss about the available diagnostic methods and biosensors for COVID-19 detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...