Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 21(12): 1288-1302, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584671

RESUMEN

Constraints on the p53 tumor suppressor pathway have long been associated with the progression, therapeutic resistance, and poor prognosis of melanoma, the most aggressive form of skin cancer. Likewise, the insulin-like growth factor type 1 receptor (IGF1R) is recognized as an essential coordinator of transformation, proliferation, survival, and migration of melanoma cells. Given that ß-arrestin (ß-arr) system critically governs the anti/pro-tumorigenic p53/IGF1R signaling pathways through their common E3 ubiquitin-protein ligase MDM2, we explore whether unbalancing this system downstream of IGF1R can enhance the response of melanoma cells to chemotherapy. Altering ß-arr expression demonstrated that both ß-arr1-silencing and ß-arr2-overexpression (-ß-arr1/+ß-arr2) facilitated nuclear-to-cytosolic MDM2 translocation accompanied by decreased IGF1R expression, while increasing p53 levels, resulting in reduced cell proliferation/survival. Imbalance towards ß-arr2 (-ß-arr1/+ß-arr2) synergizes with the chemotherapeutic agent, dacarbazine, in promoting melanoma cell toxicity. In both 3D spheroid models and in vivo in zebrafish models, this combination strategy, through dual IGF1R downregulation/p53 activation, limits melanoma cell growth, survival and metastatic spread. In clinical settings, analysis of the TCGA-SKCM patient cohort confirms ß-arr1-/ß-arr2+ imbalance as a metastatic melanoma vulnerability that may enhance therapeutic benefit. Our findings suggest that under steady-state conditions, IGF1R/p53-tumor promotion/suppression status-quo is preserved by ß-arr1/2 homeostasis. Biasing this balance towards ß-arr2 can limit the protumorigenic IGF1R activities while enhancing p53 activity, thus reducing multiple cancer-sustaining mechanisms. Combined with other therapeutics, this strategy improves patient responses and outcomes to therapies relying on p53 or IGF1R pathways. IMPLICATIONS: Altogether, ß-arrestin system bias downstream IGF1R is an important metastatic melanoma vulnerability that may be conductive for therapeutic benefit.


Asunto(s)
Arrestinas , Melanoma , Animales , Humanos , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/metabolismo , beta-Arrestina 1/metabolismo , Isoformas de Proteínas/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Arrestina beta 2/metabolismo , Línea Celular Tumoral , Receptor IGF Tipo 1/metabolismo
3.
Oncogene ; 41(4): 600-611, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785779

RESUMEN

As the p53 tumor suppressor is rarely mutated in conjunctival melanoma (CM), we investigated its activation as a potential therapeutic strategy. Preventing p53/Mdm2 interaction by Nutlin-3, the prototypical Mdm2 antagonist, or via direct siRNA Mdm2 depletion, increased p53 and inhibited viability in CM cell lines. The sensitivity to Nutlin-3 p53 reactivation with concomitant Mdm2 stabilization was higher than that achieved by siRNA, indicative of effects on alternative Mdm2 targets, identified as the cancer-protective IGF-1R. Nutlin-3 treatment increased the association between IGF-1R and ß-arrestin1, the adaptor protein that brings Mdm2 to the IGF-1R, initiating receptor degradation in a ligand-dependent manner. Controlled expression of ß-arrestin1 augmented inhibitory Nutlin-3 effects on CM survival through enhanced IGF-1R degradation. Yet, the effect of IGF-1R downregulation on cell proliferation is balanced by ß-arrestin1-induced p53 inhibition. As mitomycin (MMC) is a well-established adjuvant treatment for CM, and it triggers p53 activation through genotoxic stress, we evaluated how these alternative p53-targeting strategies alter the cancer-relevant bioactivities of CM. In 2D and 3D in vitro models, Nutlin-3 or MMC alone, or in combination, reduces the overall cell tumor growth ~30%, with double treatment inhibition rate only marginally higher than single-drug regimens. However, histopathological evaluation of the 3D models revealed that Nutlin-3 was the most effective, causing necrotic areas inside spheroids and complete loss of nuclear staining for the proliferative marker Ki67. These findings were further validated in vivo; zebrafish xenografts demonstrate that Nutlin-3 alone has higher efficacy in restraining CM tumor cell growth and preventing metastasis. Combined, these results reveal that ß-arrestin1 directs Mdm2 toward different substrates, thus balancing IGF-1R pro-tumorigenic and p53-tumor suppressive signals. This study defines a potent dual-hit strategy: simultaneous control of a tumor-promoter (IGF-1R) and tumor-suppressor (p53), which ultimately mitigates recurrent and metastatic potential, thus opening up targeted therapy to CM.


Asunto(s)
Neoplasias de la Conjuntiva/genética , Melanoma/genética , Receptor IGF Tipo 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Neoplasias de la Conjuntiva/patología , Humanos , Masculino , Melanoma/patología , Ratones , Transfección
4.
Int Rev Cell Mol Biol ; 339: 1-40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29776602

RESUMEN

Receptor tyrosine kinases (RTKs) such as the insulin-like growth factor type 1 receptor (IGF-1R) control important biological activities as well as being involved in pathological processes. Due to their supportive nature in many human cancers they have long been considered attractive therapeutic targets. However, lessons learnt from early targeting trials highlight that a simple "active versus inactive" state model with classical kinase-only signaling is overly simplistic and does not describe reality. A vast amount of evidence exists disproving this model and hence provides a rational explanation for failure of many targeting agents designed under such a paradigm. In addition, substantial evidence exists that the IGF-1R and other RTKs make direct use of the G protein-coupled receptor (GPCR) components G proteins, GRKs, and ß-arrestins, outside of their traditional receptor family frame. In this chapter we review the evidence that RTKs can undertake a wide range of active conformations, capable of distinct downstream signal cascades and propose an RTK/GPCR functional hybrid model, while discussing the implications of such an update on therapeutic drug development pipelines.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Activación Transcripcional/genética , beta-Arrestinas/metabolismo
5.
Oncotarget ; 8(47): 82256-82267, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29137261

RESUMEN

Due to its ability to compensate for signals lost following therapeutic MAPK-inhibition, insulin-like growth factor type 1 receptor (IGF-1R) co-targeting is a rational approach for melanoma treatment. However IGF-1R conformational changes associated with its inhibition can preferentially activate MAPK-pathway in a kinase-independent manner, through a process known as biased signaling. We explored the impact of biased IGF-1R signaling, on response to MAPK inhibition in a panel of skin melanoma cell lines with differing MAPK and p53 mutation statuses. Specific siRNA towards IGF-1R down-regulates the receptor and all its signaling in a balanced manner, whilst IGF-1R targeting by small molecule Nutlin-3 parallels receptor degradation with a transient biased pERK1/2 activity, with both strategies synergizing with MEK1/2 inhibition. On the other hand, IGF-1R down-regulation by a targeted antibody (Figitumumab) induces a biased receptor conformation, preserved even when the receptor is exposed to the balanced natural ligand IGF-1. This process sustains MAPK activity and competes with the MEK1/2 inhibition. Our results indicate that IGF-1R down-regulation offers an approach to increase the sensitivity of melanoma cells to MAPK inhibition, and highlights that controlling biased signaling could provide greater specificity and precision required for multi-hit therapy.

6.
Growth Horm IGF Res ; 25(1): 2-12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25466906

RESUMEN

The prime position of the insulin-like growth factor 1 receptor (IGF-1R), at the head of the principle mitogenic and anti-apoptotic signalling cascades, along with the resilience to transformation of IGF-1R deficient cells fuelled great excitement for its anti-cancer targeting. Yet its potential has not been fulfilled, as clinical trial results fell far short of expectations. Advancements in understanding of other receptors' function have now begun to shed light on this incongruity, with the now apparent parallels highlighting the immaturity of our understanding of IGF-1R biology, with the model used for drug development now recognised as having been too simplistic. Gathering together the many advancements of the field of IGF-1R research over the past decade, alongside those in the GPCR field, advocates for a major paradigm shift in our appreciation of the subtle workings of this receptor. This review will emphasise the updating of the IGF-1R's classification from an RTK, to an RTK/GPCR functional hybrid, which integrates both canonical kinase signalling with many functions characteristic of a GPCR. Recognition of the shortcomings of IGF-1R inhibitor drug development programs and the models used not only allows us to reignite the initial interest in the IGF-1R as an anti-cancer therapeutic target, but also points to the possibility of biased ligand therapeutics, which together may hold a very powerful key to unlocking the true potential of IGF-1R modulation.


Asunto(s)
Neoplasias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Ratones , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Receptor IGF Tipo 1/clasificación
7.
Pediatr Endocrinol Rev ; 10(4): 473-84, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23957198

RESUMEN

The IGF-1R pathway is essential for the initiation and progression of many cancers. In contrast to other receptor tyrosine kinases involved in cancer, it is not frequently mutated or amplified. The classical model of signaling through the IGF-1R centers on ligand initiated kinase activation, allowing binding of adaptor molecules and downstream activation of the MAPK and PI3K pathways. The signaling is terminated through receptor ubiquitination and subsequent degradation. To date, therapies targeting IGF-1R have been designed solely aiming to block phosphorylation mediated signaling by preventing receptor-ligand interaction or by limiting kinase activation. Yet, the classical model is insufficient to explain receptor behavior induced by some IGF-1R inhibitors. This review advocates an updated model of IGF-1R signaling, accommodating the "classical" kinase signaling and the IGF-1R-kinase independent signaling thus providing the theoretical background for receptor downregulation induced by IGF-1R inhibitors. This model should be considered for future design of effective therapies targeting the IGF-1R pathway.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor IGF Tipo 1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Niño , Humanos , Neoplasias/patología , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...