Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 286(1901): 20190053, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014221

RESUMEN

Marine reserves can effectively restore harvested populations, and 'mega-reserves' increasingly protect large tracts of ocean. However, no method exists of monitoring ecological responses at this large scale. Herbivory is a key mechanism structuring ecosystems, and this consumer-resource interaction's strength on coral reefs can indicate ecosystem health. We screened 1372, and measured features of 214, reefs throughout Australia's Great Barrier Reef using high-resolution satellite imagery, combined with remote underwater videography and assays on a subset, to quantify the prevalence, size and potential causes of 'grazing halos'. Halos are known to be seascape-scale footprints of herbivory and other ecological interactions. Here we show that these halo-like footprints are more prevalent in reserves, particularly older ones (approx. 40 years old), resulting in predictable changes to reef habitat at scales visible from space. While the direct mechanisms for this pattern are relatively clear, the indirect mechanisms remain untested. By combining remote sensing and behavioural ecology, our findings demonstrate that reserves can shape large-scale habitat structure by altering herbivores' functional importance, suggesting that reserves may have greater value in restoring ecosystems than previously appreciated. Additionally, our results show that we can now detect macro-patterns in reef species interactions using freely available satellite imagery. Low-cost, ecosystem-level observation tools will be critical as reserves increase in number and scope; further investigation into whether halos may help seems warranted. Significance statement: Marine reserves are a widely used tool to mitigate fishing impacts on marine ecosystems. Predicting reserves' large-scale effects on habitat structure and ecosystem functioning is a major challenge, however, because these effects unfold over longer and larger scales than most ecological studies. We use a unique approach merging remote sensing and behavioural ecology to detect ecosystem change within reserves in Australia's vast Great Barrier Reef. We find evidence of changes in reefs' algal habitat structure occurring over large spatial (thousands of kilometres) and temporal (40+ years) scales, demonstrating that reserves can alter herbivory and habitat structure in predictable ways. This approach demonstrates that we can now detect aspects of reefs' ecological responses to protection even in remote and inaccessible reefs globally.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Parques Recreativos , Queensland
2.
PLoS Genet ; 9(12): e1004036, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367282

RESUMEN

Roberts Syndrome (RBS) and Cornelia de Lange Syndrome (CdLS) are severe developmental maladies that present with nearly an identical suite of multi-spectrum birth defects. Not surprisingly, RBS and CdLS arise from mutations within a single pathway--here involving cohesion. Sister chromatid tethering reactions that comprise cohesion are required for high fidelity chromosome segregation, but cohesin tethers also regulate gene transcription, promote DNA repair, and impact DNA replication. Currently, RBS is thought to arise from elevated levels of apoptosis, mitotic failure, and limited progenitor cell proliferation, while CdLS is thought to arise, instead, from transcription dysregulation. Here, we review new information that implicates RBS gene mutations in altered transcription profiles. We propose that cohesin-dependent transcription dysregulation may extend to other developmental maladies; the diagnoses of which are complicated through multi-functional proteins that manifest a sliding scale of diverse and severe phenotypes. We further review evidence that cohesinopathies are more common than currently posited.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Anomalías Craneofaciales/genética , Síndrome de Cornelia de Lange/genética , Ectromelia/genética , Hipertelorismo/genética , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Anomalías Craneofaciales/patología , Síndrome de Cornelia de Lange/patología , Ectromelia/patología , Humanos , Hipertelorismo/patología , Redes y Vías Metabólicas/genética , Mutación , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...