Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 461: 114845, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38184206

RESUMEN

Biological sex influences decision-making processes in significant ways, differentiating the responses animals choose when faced with a range of stimuli. The neurobiological underpinnings that dictate sex differences in decision-making tasks remains an important open question, yet single-sex studies of males form most studies in behavioural neuroscience. Here we used female and male BALB/c mice on two spatial learning and memory tasks and examined the expression of perineuronal nets (PNNs) and parvalbumin interneurons (PV) in regions correlated with spatial memory. Mice underwent the aversive active place avoidance (APA) task or the appetitive trial-unique nonmatching-to-location (TUNL) touchscreen task. Mice in the APA cohort learnt to avoid the foot-shock and no differences were observed on key measures of the task nor in the number and intensity of PNNs and PV. On the delay but not separation manipulation in the TUNL task, females received more incorrect trials and less correct trials compared to males. Furthermore, females in this cohort exhibited higher intensity PNNs and PV cells in the agranular and granular retrosplenial cortex, compared to males. These data show that female and male mice perform similarly on spatial learning tasks. However, sex differences in neural circuitry may underly differences in making decisions under conditions of uncertainty on an appetitive task. These data emphasise the importance of using mice of both sexes in studies of decision-making neuroscience.


Asunto(s)
Interneuronas , Neuronas , Animales , Femenino , Masculino , Ratones , Matriz Extracelular , Interneuronas/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo , Aprendizaje Espacial , Incertidumbre
2.
Front Microbiol ; 14: 1320856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075874

RESUMEN

The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described, although whether such attenuation is retained for later variants like BA.5 and XBB remains controversial. We show that BA.5 and XBB isolates were significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, showing increased neurotropic potential, resulting in fulminant brain infection and mortality, similar to that seen for original ancestral isolates. BA.5 also infected human cortical brain organoids to a greater extent than the BA.1 and original ancestral isolates. In the brains of mice, neurons were the main target of infection, and in human organoids neuronal progenitor cells and immature neurons were infected. The results herein suggest that evolving omicron variants may have increasing neurotropic potential.

3.
AIMS Neurosci ; 9(1): 31-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434279

RESUMEN

Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naïve mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO and reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.

4.
J Am Soc Mass Spectrom ; 33(3): 592-597, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35084175

RESUMEN

In this paper, we investigate the presence of latrunculin A in the outer rim of a nudibranch Chromodoris kuiteri and show that by combining ultrathin cryosection methods with MALDI MSI we can achieve improved lateral (x and y) resolution and very high resolution in the z dimension by virtue of the ultrathin 200 nm thin cryosections. We also demonstrate that a post ionization laser increases sensitivity. Recent advances in MALDI source design have improved the lateral resolution (x and y) and sensitivity during MSI. Taken together, very high z resolution, from ultrathin sections, and improved lateral (x and y) resolution will allow for subcellular molecular imaging with the potential for subcellular 3D volume reconstruction.


Asunto(s)
Crioultramicrotomía/métodos , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/análisis , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Gastrópodos/química , Procesamiento de Imagen Asistido por Computador , Tiazolidinas/análisis , Tiazolidinas/química
5.
Mol Psychiatry ; 26(11): 6975-6991, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34040151

RESUMEN

Advanced physiological aging is associated with impaired cognitive performance and the inability to induce long-term potentiation (LTP), an electrophysiological correlate of memory. Here, we demonstrate in the physiologically aged, senescent mouse brain that scanning ultrasound combined with microbubbles (SUS+MB), by transiently opening the blood-brain barrier, fully restores LTP induction in the dentate gyrus of the hippocampus. Intriguingly, SUS treatment without microbubbles (SUSonly), i.e., without the uptake of blood-borne factors, proved even more effective, not only restoring LTP, but also ameliorating the spatial learning deficits of the aged mice. This functional improvement is accompanied by an altered milieu of the aged hippocampus, including a lower density of perineuronal nets, increased neurogenesis, and synaptic signaling, which collectively results in improved spatial learning. We therefore conclude that therapeutic ultrasound is a non-invasive, pleiotropic modality that may enhance cognition in elderly humans.


Asunto(s)
Potenciación a Largo Plazo , Receptores de N-Metil-D-Aspartato , Animales , Cognición/fisiología , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Ratones , Neurogénesis , Receptores de N-Metil-D-Aspartato/metabolismo
6.
J Control Release ; 327: 667-675, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32918963

RESUMEN

The blood-brain barrier (BBB) is a dynamic diffusional barrier regulating the molecular and chemical flux between the blood and brain, thereby preserving cerebral homeostasis. Endothelial cells form the core anatomical component of the BBB based on properties such as specialized junctional complexes between cells, which restricts paracellular transport, and extremely low levels of vesicular transport, restricting transcytosis. In performing its protective function, the BBB also constrains the entry of therapeutics into the brain, hampering the treatment of various neurological disorders. Focused ultrasound is a novel therapeutic modality that has shown efficacy in transiently and non-invasively opening the BBB for the targeted delivery of therapeutics to the brain. Although the ability of ultrasound to disrupt the junctional assembly of endothelial cells has been partially investigated, its effect on the transcellular mode of transport has been largely neglected. In this study, we found that ultrasound induces a pronounced increase in the levels of the vesicle-forming protein caveolin-1. In order to investigate the role of vesicle-mediated transcytoplasmic transport, we compared the leakage of various cargo sizes between a mouse model that lacks caveolin-1 and wild-type mice following sonication of the hippocampus. The absence of caveolin-1 did not lead to overt abnormalities in the cerebral vasculature in the mice. We found that caveolin-1 has a critical role specifically in the transport of large (500 kDa), but not smaller (3 and 70 kDa) cargoes. Our findings indicate differential effects of therapeutic ultrasound on cellular transport mechanisms, with implications for therapeutic interventions.


Asunto(s)
Caveolina 1 , Células Endoteliales , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Ratones , Transcitosis
7.
Brain Struct Funct ; 224(3): 1315-1329, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30712221

RESUMEN

Converging evidence from human and animal studies support an association between vitamin D deficiency and cognitive impairment. Previous studies have shown that hippocampal volume is reduced in adults with vitamin D deficiency as well as in a range of disorders, such as schizophrenia. The aim of the current study was to examine the effect of adult vitamin D (AVD) deficiency on hippocampal-dependent spatial learning, and hippocampal volume and connectivity in healthy adult mice. Ten-week-old male BALB/c mice were fed a control (vitamin D 1500 IU/kg) or vitamin D-depleted (vitamin D 0 IU/kg) diet for a minimum of 10 weeks. The mice were then tested for hippocampal-dependent spatial learning using active place avoidance (APA) and on tests of muscle and motor coordination (rotarod and grip strength). The mice were perfused and brains collected to acquire ex vivo structural and diffusion-weighted images using a 16.4 T MRI scanner. We also performed immunohistochemistry to quantify perineuronal nets (PNNs) and parvalbumin (PV) interneurons in various brain regions. AVD-deficient mice had a lower latency to enter the shock zone on APA, compared to control mice, suggesting impaired hippocampal-dependent spatial learning. There were no differences in rotarod or grip strength, indicating that AVD deficiency did not have an impact on muscle or motor coordination. AVD deficiency did not have an impact on hippocampal volume. However, AVD-deficient mice displayed a disrupted network centred on the right hippocampus with abnormal connectomes among 29 nodes. We found a reduction in PNN positive cells, but no change in PV, centred on the hippocampus. Our results provide compelling evidence to show that AVD deficiency in otherwise healthy adult mice may play a key role in hippocampal-dependent learning and memory formation. We suggest that the spatial learning deficits could be due to the disruption of right hippocampal structural connectivity.


Asunto(s)
Deficiencia de Ácido Ascórbico/complicaciones , Deficiencia de Ácido Ascórbico/patología , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/etiología , Vías Nerviosas/fisiopatología , Análisis de Varianza , Animales , Deficiencia de Ácido Ascórbico/diagnóstico por imagen , Reacción de Prevención/fisiología , Conectoma , Toma de Decisiones Asistida por Computador , Modelos Animales de Enfermedad , Hipocampo/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Esquelético/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Parvalbúminas/metabolismo , Lectinas de Plantas/metabolismo , Trastornos Psicomotores/etiología , Receptores N-Acetilglucosamina/metabolismo
8.
Hum Brain Mapp ; 40(2): 394-406, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30251770

RESUMEN

Vitamin D deficiency may exacerbate adverse neurocognitive outcomes in the progression of diseases such as Parkinson's, Alzheimer's, and other dementias. Mild cognitive impairment (MCI) is prodromal for these neurocognitive disorders and neuroimaging studies suggest that, in the elderly, this cognitive impairment is associated with a reduction in hippocampal volume and white matter structural integrity. To test whether vitamin D is associated with neuroanatomical correlates of MCI, we analyzed an existing structural and diffusion MRI dataset of elderly patients with MCI. Based on serum 25-OHD levels, patients were categorized into serum 25-OHD deficient (<12 ng/mL, n = 27) or not-deficient (>12 ng/mL, n = 29). Freesurfer 6.0 was used to parcellate the whole brain into 164 structures and segment the hippocampal subfields. Whole-brain structural connectomes were generated using probabilistic tractography with MRtrix. The network-based statistic (NBS) was used to identify subnetworks of connections that significantly differed between the groups. We found a significant reduction in total hippocampal volume in the serum 25-OHD deficient group especially in the CA1, molecular layer, dentate gyrus, and fimbria. We observed a connection deficit in 13 regions with the right hippocampus at the center of the disrupted network. Our results demonstrate that low vitamin D is associated with reduced volumes of hippocampal subfields and connection deficits in elderly people with MCI, which may exacerbate neurocognitive outcomes. Longitudinal studies are now required to determine if vitamin D can serve as a biomarker for Alzheimer's disease and if intervention can prevent the progression from MCI to major cognitive disorders.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Hipocampo , Red Nerviosa , Deficiencia de Vitamina D , Anciano , Envejecimiento/sangre , Envejecimiento/patología , Envejecimiento/fisiología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/diagnóstico por imagen , Deficiencia de Vitamina D/patología , Deficiencia de Vitamina D/fisiopatología
9.
Nat Neurosci ; 21(5): 654-658, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29686260

RESUMEN

We elucidated the intrinsic circuitry of the medial prefrontal cortex and its role in regulating fear extinction, using neuronal tracing and optogenetic stimulation in vitro and in vivo. We show that pyramidal neurons in layer 5/6 of the prelimbic medial prefrontal cortex project to pyramidal cells in layer 5/6 of the infralimbic cortex. Activation of this connection enhances fear extinction, redefining the role of the prelimbic cortex in extinction learning.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Sistema Límbico/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Animales , Mapeo Encefálico , Femenino , Aprendizaje/fisiología , Sistema Límbico/citología , Masculino , Vías Nerviosas/citología , Neuronas Aferentes/fisiología , Optogenética , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Wistar
10.
Sci Adv ; 3(11): eaao4709, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29134201

RESUMEN

Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.


Asunto(s)
Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/química , Animales , Arrestina/clasificación , Arrestina/genética , Evolución Biológica , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Peces , Opsinas/clasificación , Opsinas/genética , Filogenia , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/química , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transcriptoma , Transducina/clasificación , Transducina/genética
11.
J Physiol ; 595(16): 5653-5669, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28594440

RESUMEN

KEY POINTS: Dendritic and spine calcium imaging in combination with electrophysiology in acute slices revealed that in medial intercalated cells of the amygdala: Action potentials back-propagate into the dendritic tree, but due to the presence of voltage-dependent potassium channels, probably Kv4.2 channels, attenuate over distance. A mixed population of AMPA receptors with rectifying and linear I-V relations are present at individual spines of a single neuron. Decay kinetics and pharmacology suggest tri-heteromeric NMDA receptors at basolateral-intercalated cell synapses. NMDA receptors are the main contributors to spine calcium entry in response to synaptic stimulation. Calcium signals in response to low- and high-frequency stimulation, and in combination with spontaneous action potentials are locally restricted to the vicinity of active spines. Together, these data show that calcium signalling in these GABAergic neurons is tightly controlled and acts as a local signal. ABSTRACT: The amygdala plays a central role in fear conditioning and extinction. The medial intercalated (mITC) neurons are GABAergic cell clusters interspaced between the basolateral (BLA) and central amygdala (CeA). These neurons are thought to play a key role in fear and extinction, controlling the output of the CeA by feed-forward inhibition. BLA to mITC cell inputs are thought to undergo synaptic plasticity, a mechanism underlying learning, which is mediated by NMDA receptor-dependent mechanisms that require changes in cytosolic calcium. Here, we studied the electrical and calcium signalling properties of mITC neurons in GAD67-eGFP mice using whole-cell patch clamp recordings and two-photon calcium imaging. We show that action potentials back-propagate (bAP) into dendrites, and evoke calcium transients in both the shaft and the dendritic spine. However, bAP-mediated calcium rises in the dendrites attenuate with distance due to shunting by voltage-gated potassium channels. Glutamatergic inputs make dual component synapses on spines. At these synapses, postsynaptic AMPA receptors can have linear or rectifying I-V relationships, indicating that some synapses express GluA2-lacking AMPA receptors. Synaptic NMDA receptors had intermediate decay kinetics, and were only partly blocked by GuN2B selective blockers, indicating these receptors are GluN1/GluN2A/GluN2B trimers. Low- or high-frequency synaptic stimulation raised spine calcium, mediated by calcium influx via NMDA receptors, was locally restricted and did not invade neighbouring spines. Our results show that in mITC neurons, postsynaptic calcium is tightly controlled, and acts as a local signal.


Asunto(s)
Amígdala del Cerebelo/fisiología , Señalización del Calcio/fisiología , Dendritas/fisiología , Potenciales de Acción , Animales , Femenino , Técnicas In Vitro , Masculino , Ratones Transgénicos , Canales de Potasio con Entrada de Voltaje/fisiología , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología
12.
PLoS One ; 11(4): e0152328, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27043014

RESUMEN

Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.


Asunto(s)
Conducta Animal , Proliferación Celular , Hipocampo/metabolismo , Neuronas/metabolismo , Deficiencia de Vitamina D/metabolismo , Animales , Supervivencia Celular , Proteína Doblecortina , Hipocampo/patología , Ratones , Ratones Endogámicos BALB C , Neuronas/patología , Deficiencia de Vitamina D/patología
13.
Physiol Rep ; 4(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26733246

RESUMEN

We have previously shown that in the basolateral amygdala (BLA), action potentials in one type of parvalbumin (PV)-expressing GABAergic interneuron can evoke a disynaptic feedback excitatory postsynaptic potential (fbEPSP) onto the same presynaptic interneuron. Here, using whole-cell recordings from PV-expressing interneurons in acute brain slices we expand on this finding to show that this response is first detectable at 2-week postnatal, and is most prevalent in animals beyond 3 weeks of age (>P21). This circuit has a very high fidelity, and single action potential evoked fbEPSPs display few failures. Reconstruction of filled neurons, and electron microscopy show that interneurons that receive feedback excitation make symmetrical synapses on both the axon initial segments (AIS), as well as the soma and proximal dendrites of local pyramidal neurons, suggesting fbEPSP interneurons are morphologically distinct from the highly specialized chandelier neurons that selectively target the axon initial segment of pyramidal neurons. Single PV interneurons could trigger very large (~ 1 nA) feedback excitatory postsynaptic currents (fbEPSCs) suggesting that these neurons are heavily reciprocally connected to local glutamatergic principal cells. We conclude that in the BLA, a subpopulation of PV interneurons forms a distinct neural circuit in which a single action potential can recruit multiple pyramidal neurons to discharge near simultaneously and feed back onto the presynaptic interneuron.


Asunto(s)
Complejo Nuclear Basolateral/metabolismo , Retroalimentación Fisiológica/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/metabolismo , Parvalbúminas/biosíntesis , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Regulación de la Expresión Génica , Interneuronas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Técnicas de Cultivo de Órganos , Receptores de GABA/fisiología
14.
Cell Rep ; 10(9): 1435-1442, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25753409

RESUMEN

The basolateral amygdala (BLA) and prefrontal cortex (PFC) are partners in fear learning and extinction. Intercalated (ITC) cells are inhibitory neurons that surround the BLA. Lateral ITC (lITC) neurons provide feed-forward inhibition to BLA principal neurons, whereas medial ITC (mITC) neurons form an inhibitory interface between the BLA and central amygdala (CeA). Notably, infralimbic prefrontal (IL) input to mITC neurons is thought to play a key role in fear extinction. Here, using targeted optogenetic stimulation, we show that lITC neurons receive auditory input from cortical and thalamic regions. IL inputs innervate principal neurons in the BLA but not mITC neurons. These results suggest that (1) these neurons may play a more central role in fear learning as both lITCs and mITCs receive auditory input and that (2) mITC neurons cannot be driven directly by the IL, and their role in fear extinction is likely mediated via the BLA.

15.
J Neurosci ; 34(26): 8699-715, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24966371

RESUMEN

The medial nucleus of the amygdala (MeA) plays a key role in innate emotional behaviors by relaying olfactory information to hypothalamic nuclei involved in reproduction and defense. However, little is known about the neuronal components of this region or their role in the olfactory-processing circuitry of the amygdala. Here, we have characterized neurons in the posteroventral division of the medial amygdala (MePV) using the GAD67-GFP mouse. Based on their electrophysiological properties and GABA expression, unsupervised cluster analysis divided MePV neurons into three types of GABAergic (Types 1-3) and two non-GABAergic cells (Types I and II). All cell types received olfactory synaptic input from the accessory olfactory bulb and, with the exception of Type 2 GABAergic neurons, sent projections to both reproductive and defensive hypothalamic nuclei. Type 2 GABAergic cells formed a chemically and electrically interconnected network of local circuit inhibitory interneurons that resembled neurogliaform cells of the piriform cortex and provided feedforward inhibition of the olfactory-processing circuitry of the MeA. These findings provide a description of the cellular organization and connectivity of the MePV and further our understanding of amygdala circuits involved in olfactory processing and innate emotions.


Asunto(s)
Amígdala del Cerebelo/fisiología , Neuronas GABAérgicas/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Amígdala del Cerebelo/citología , Animales , Neuronas GABAérgicas/citología , Masculino , Ratones , Neuronas/citología , Bulbo Olfatorio/citología , Vías Olfatorias/citología
16.
J Neurosci ; 33(15): 6603-13, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575857

RESUMEN

It is now widely accepted that hippocampal neurogenesis underpins critical cognitive functions, such as learning and memory. To assess the behavioral importance of adult-born neurons, we developed a novel knock-in mouse model that allowed us to specifically and reversibly ablate hippocampal neurons at an immature stage. In these mice, the diphtheria toxin receptor (DTR) is expressed under control of the doublecortin (DCX) promoter, which allows for specific ablation of immature DCX-expressing neurons after administration of diphtheria toxin while leaving the neural precursor pool intact. Using a spatially challenging behavioral test (a modified version of the active place avoidance test), we present direct evidence that immature DCX-expressing neurons are required for successful acquisition of spatial learning, as well as reversal learning, but are not necessary for the retrieval of stored long-term memories. Importantly, the observed learning deficits were rescued as newly generated immature neurons repopulated the granule cell layer upon termination of the toxin treatment. Repeat (or cyclic) depletion of immature neurons reinstated behavioral deficits if the mice were challenged with a novel task. Together, these findings highlight the potential of stimulating neurogenesis as a means to enhance learning.


Asunto(s)
Reacción de Prevención/fisiología , Técnicas de Sustitución del Gen/psicología , Hipocampo/fisiología , Memoria/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Células-Madre Neurales/fisiología , Neuropéptidos/fisiología , Aprendizaje Inverso/fisiología , Animales , Células Cultivadas , Corteza Cerebral , Proteínas del Citoesqueleto/biosíntesis , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Técnicas de Sustitución del Gen/métodos , Factor de Crecimiento Similar a EGF de Unión a Heparina , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Memoria a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Modelos Animales , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/biosíntesis , Neurogénesis/fisiología , Neuropéptidos/genética , Percepción Espacial/fisiología
17.
PLoS One ; 7(5): e36913, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22629340

RESUMEN

Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis.


Asunto(s)
Actinas/metabolismo , Dinaminas/metabolismo , Endocitosis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Bufo marinus , Membrana Celular/metabolismo , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Sinapsis/metabolismo
18.
Neurochem Res ; 37(11): 2364-78, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22528834

RESUMEN

Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in the astrocyte cytoskeleton that plays an important role in the structure and function of the cell. GFAP can be phosphorylated at six serine (Ser) or threonine (Thr) residues but little is known about the role of GFAP phosphorylation in physiological and pathophysiological states. We have generated antibodies against two phosphorylated GFAP (pGFAP) proteins: p8GFAP, where GFAP is phosphorylated at Ser-8 and p13GFAP, where GFAP is phosphorylated at Ser-13. We examined p8GFAP and p13GFAP expression in the control neonatal pig brain and at 24 and 72 h after an hypoxic-ischemic (HI) insult. Immunohistochemistry demonstrated pGFAP expression in astrocytes with an atypical cytoskeletal morphology, even in control brains. Semi-quantitative western blotting revealed that p8GFAP expression was significantly increased at 24 h post-insult in HI animals with seizures in frontal, parietal, temporal and occipital cortices. At 72 h post-insult, p8GFAP and p13GFAP expression were significantly increased in HI animals with seizures in brain regions that are vulnerable to cellular damage (cortex and basal ganglia), but no changes were observed in brain regions that are relatively spared following an HI insult (brain stem and cerebellum). Increased pGFAP expression was associated with poor neurological outcomes such as abnormal encephalography and neurobehaviour, and increased histological brain damage. Phosphorylation of GFAP may play an important role in astrocyte remodelling during development and disease and could potentially contribute to the plasticity of the central nervous system.


Asunto(s)
Animales Recién Nacidos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Animales , Western Blotting , Electroencefalografía , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/fisiopatología , Inmunohistoquímica , Fosforilación , Porcinos
19.
J Neurosci ; 31(20): 7486-91, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593332

RESUMEN

It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/enzimología , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Animales , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Factores de Transcripción p300-CBP/metabolismo
20.
J Neurosci ; 30(44): 14619-29, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21048119

RESUMEN

The lateral amygdala (LA) plays a key role in emotional learning and is the main site for sensory input into the amygdala. Within the LA, pyramidal neurons comprise the major cell population with plasticity of inputs to these neurons thought to underlie fear learning. Pyramidal neuron activity is tightly controlled by local interneurons, and GABAergic modulation strongly influences amygdala-dependent learning. Synaptic inputs to some interneurons in the LA can also undergo synaptic plasticity, but the identity of these cells and the mechanisms that underlie this plasticity are not known. Here we show that long-term potentiation (LTP) in LA interneurons is restricted to a specific type of interneuron that is defined by the lack of expression of synaptic NR2B subunits. We find that LTP is only present at cortical inputs to these cells and is initiated by calcium influx via calcium-permeable AMPA receptors. LTP is maintained by trafficking of GluR2-lacking AMPA receptors that require an interaction with SAP97 and the actin cytoskeleton. Our results define a novel population of interneurons in the LA that control principal neuron excitability by feed-forward inhibition of cortical origin. This selective enhanced inhibition may contribute to reducing the activity of principal neurons engaged during extinction of conditioned fear.


Asunto(s)
Amígdala del Cerebelo/citología , Interneuronas/clasificación , Interneuronas/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Vías Aferentes/fisiología , Amígdala del Cerebelo/fisiología , Animales , Corteza Cerebral/fisiología , Técnicas de Sustitución del Gen , Interneuronas/citología , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Subunidades de Proteína/fisiología , Receptores AMPA/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...