Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775357

RESUMEN

Peroxyacetyl nitrate (PAN) is produced in the atmosphere by photochemical oxidation of non-methane volatile organic compounds in the presence of nitrogen oxides (NOx), and it can be transported over long distances at cold temperatures before decomposing thermally to release NOx in the remote troposphere. It is both a tracer and a precursor for transpacific ozone pollution transported from East Asia to North America. Here, we directly demonstrate this transport with PAN satellite observations from the infrared atmospheric sounding interferometer (IASI). We reprocess the IASI PAN retrievals by replacing the constant prior vertical profile with vertical shape factors from the GEOS-Chem model that capture the contrasting shapes observed from aircraft over South Korea (KORUS-AQ) and the North Pacific (ATom). The reprocessed IASI PAN observations show maximum transpacific transport of East Asian pollution in spring, with events over the Northeast Pacific offshore from the Western US associated in GEOS-Chem with elevated ozone in the lower free troposphere. However, these events increase surface ozone in the US by less than 1 ppbv because the East Asian pollution mainly remains offshore as it circulates the Pacific High.

2.
Environ Sci Technol ; 57(43): 16276-16288, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37857355

RESUMEN

Nationally reported greenhouse gas inventories are a core component of the Paris Agreement's transparency framework. Comparisons with emission estimates derived from atmospheric observations help identify improvements to reduce uncertainties and increase the confidence in reported values. To facilitate comparisons over the contiguous United States, we present a 0.1° × 0.1° gridded inventory of annual 2012-2018 anthropogenic methane emissions, allocated to 26 individual source categories, with scale-dependent error estimates. Our inventory is consistent with the U.S. Environmental Protection Agency (EPA) Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHGI), submitted to the United Nations in 2020. Total emissions and patterns (spatial/temporal) reflect the activity and emission factor data underlying the GHGI, including many updates relative to a previous gridded version of the GHGI that has been extensively compared with observations. These underlying data are not generally available in global gridded inventories, and comparison to EDGAR version 6 shows large spatial differences, particularly for the oil and gas sectors. We also find strong regional variability across all sources in annual 2012-2018 spatial trends, highlighting the importance of understanding regional- and facility-level activities. Our inventory represents the first time series of gridded GHGI methane emissions and enables robust comparisons of emissions and their trends with atmospheric observations.


Asunto(s)
Contaminantes Atmosféricos , Gases de Efecto Invernadero , Estados Unidos , Metano/análisis , Contaminantes Atmosféricos/análisis , United States Environmental Protection Agency , Incertidumbre
3.
Proc Natl Acad Sci U S A ; 120(17): e2217900120, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068241

RESUMEN

The United States is the world's largest oil/gas methane emitter according to current national reports. Reducing these emissions is a top priority in the US government's climate action plan. Here, we use a 2010 to 2019 high-resolution inversion of surface and satellite observations of atmospheric methane to quantify emission trends for individual oil/gas production regions in North America and relate them to production and infrastructure. We estimate a mean US oil/gas methane emission of 14.8 (12.4 to 16.5) Tg a-1 for 2010 to 2019, 70% higher than reported by the US Environmental Protection Agency. While emissions in Canada and Mexico decreased over the period, US emissions increased from 2010 to 2014, decreased until 2017, and rose again afterward. Increases were driven by the largest production regions (Permian, Anadarko, Marcellus), while emissions in the smaller production regions generally decreased. Much of the year-to-year emission variability can be explained by oil/gas production rates, active well counts, and new wells drilled, with the 2014 to 2017 decrease driven by reduction in new wells and the 2017 to 2019 surge driven by upswing of production. We find a steady decrease in the oil/gas methane intensity (emission per unit methane gas production) for almost all major US production regions. The mean US methane intensity decreased from 3.7% in 2010 to 2.5% in 2019. If the methane intensity for the oil/gas supply chain continues to decrease at this pace, we may expect a 32% decrease in US oil/gas emissions by 2030 despite projected increases in production.

4.
Sci Adv ; 7(27)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34193415

RESUMEN

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour-1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.

5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649215

RESUMEN

Surface ozone is a severe air pollution problem in the North China Plain, which is home to 300 million people. Ozone concentrations are highest in summer, driven by fast photochemical production of hydrogen oxide radicals (HOx) that can overcome the radical titration caused by high emissions of nitrogen oxides (NOx) from fuel combustion. Ozone has been very low during winter haze (particulate) pollution episodes. However, the abrupt decrease of NOx emissions following the COVID-19 lockdown in January 2020 reveals a switch to fast ozone production during winter haze episodes with maximum daily 8-h average (MDA8) ozone concentrations of 60 to 70 parts per billion. We reproduce this switch with the GEOS-Chem model, where the fast production of ozone is driven by HOx radicals from photolysis of formaldehyde, overcoming radical titration from the decreased NOx emissions. Formaldehyde is produced by oxidation of reactive volatile organic compounds (VOCs), which have very high emissions in the North China Plain. This remarkable switch to an ozone-producing regime in January-February following the lockdown illustrates a more general tendency from 2013 to 2019 of increasing winter-spring ozone in the North China Plain and increasing association of high ozone with winter haze events, as pollution control efforts have targeted NOx emissions (30% decrease) while VOC emissions have remained constant. Decreasing VOC emissions would avoid further spreading of severe ozone pollution events into the winter-spring season.


Asunto(s)
Contaminación del Aire/análisis , Ozono/análisis , Material Particulado/análisis , Estaciones del Año , Compuestos Orgánicos Volátiles , COVID-19 , China , Productos Agrícolas , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Óxidos de Nitrógeno/química , Pandemias , Salud Pública
6.
Environ Res ; 195: 110754, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577774

RESUMEN

The burning of fossil fuels - especially coal, petrol, and diesel - is a major source of airborne fine particulate matter (PM2.5), and a key contributor to the global burden of mortality and disease. Previous risk assessments have examined the health response to total PM2.5, not just PM2.5 from fossil fuel combustion, and have used a concentration-response function with limited support from the literature and data at both high and low concentrations. This assessment examines mortality associated with PM2.5 from only fossil fuel combustion, making use of a recent meta-analysis of newer studies with a wider range of exposure. We also estimated mortality due to lower respiratory infections (LRI) among children under the age of five in the Americas and Europe, regions for which we have reliable data on the relative risk of this health outcome from PM2.5 exposure. We used the chemical transport model GEOS-Chem to estimate global exposure levels to fossil-fuel related PM2.5 in 2012. Relative risks of mortality were modeled using functions that link long-term exposure to PM2.5 and mortality, incorporating nonlinearity in the concentration response. We estimate a global total of 10.2 (95% CI: -47.1 to 17.0) million premature deaths annually attributable to the fossil-fuel component of PM2.5. The greatest mortality impact is estimated over regions with substantial fossil fuel related PM2.5, notably China (3.9 million), India (2.5 million) and parts of eastern US, Europe and Southeast Asia. The estimate for China predates substantial decline in fossil fuel emissions and decreases to 2.4 million premature deaths due to 43.7% reduction in fossil fuel PM2.5 from 2012 to 2018 bringing the global total to 8.7 (95% CI: -1.8 to 14.0) million premature deaths. We also estimated excess annual deaths due to LRI in children (0-4 years old) of 876 in North America, 747 in South America, and 605 in Europe. This study demonstrates that the fossil fuel component of PM2.5 contributes a large mortality burden. The steeper concentration-response function slope at lower concentrations leads to larger estimates than previously found in Europe and North America, and the slower drop-off in slope at higher concentrations results in larger estimates in Asia. Fossil fuel combustion can be more readily controlled than other sources and precursors of PM2.5 such as dust or wildfire smoke, so this is a clear message to policymakers and stakeholders to further incentivize a shift to clean sources of energy.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Asia , Niño , Preescolar , China , Exposición a Riesgos Ambientales , Europa (Continente) , Combustibles Fósiles , Humanos , India , Lactante , Recién Nacido , América del Norte , Material Particulado/análisis , Material Particulado/toxicidad
7.
Environ Sci Technol ; 54(18): 11037-11047, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32808786

RESUMEN

In this paper, we integrated multiple types of predictor variables and three types of machine learners (neural network, random forest, and gradient boosting) into a geographically weighted ensemble model to estimate the daily maximum 8 h O3 with high resolution over both space (at 1 km × 1 km grid cells covering the contiguous United States) and time (daily estimates between 2000 and 2016). We further quantify monthly model uncertainty for our 1 km × 1 km gridded domain. The results demonstrate high overall model performance with an average cross-validated R2 (coefficient of determination) against observations of 0.90 and 0.86 for annual averages. Overall, the model performance of the three machine learning algorithms was quite similar. The overall model performance from the ensemble model outperformed those from any single algorithm. The East North Central region of the United States had the highest R2, 0.93, and performance was weakest for the western mountainous regions (R2 of 0.86) and New England (R2 of 0.87). For the cross validation by season, our model had the best performance during summer with an R2 of 0.88. This study can be useful for the environmental health community to more accurately estimate the health impacts of O3 over space and time, especially in health studies at an intra-urban scale.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , New England , Ozono/análisis , Estados Unidos
8.
Sci Adv ; 6(17): eaaz5120, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494644

RESUMEN

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world's most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a-1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data-based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.

9.
Am J Epidemiol ; 186(6): 730-735, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28525551

RESUMEN

Wildfires burn more than 7 million acres in the United States annually, according to the US Forest Service. Little is known about which subpopulations are more vulnerable to health risks from wildfire smoke, including those associated with fine particulate matter. We estimated exposure to fine particles specifically from wildfires, as well as the associations between the presence of wildfire-specific fine particles and the amount of hospital admissions for respiratory causes among subpopulations older than 65 years of age in the western United States (2004-2009). Compared with other populations, higher fractions of persons who were black, lived in urban counties, and lived in California were exposed to more than 1 smoke wave (high-pollution episodes from wildfire smoke). The risks of respiratory admissions on smoke-wave days compared with non-smoke-wave days increased 10.4% (95% confidence interval: 1.9, 19.6) for women and 21.7% (95% confidence interval: 0.4, 47.3) for blacks. Our findings suggest that increased risks of respiratory admissions from wildfire smoke was significantly higher for women than for men (10.4% vs. 3.7%), blacks than whites (21.7% vs. 6.9%), and, although associations were not statistically different, people in lower-education counties than higher-educated counties (12.7% vs. 6.1%). Our study raised important environmental justice issues that can inform public health programs and wildfire management. As climate change increases the frequency and intensity of wildfires, evidence on vulnerable subpopulations can inform disaster preparedness and the understanding of climate change consequences.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Incendios , Material Particulado/toxicidad , Lesión por Inhalación de Humo/etiología , Humo/efectos adversos , Vida Silvestre , Negro o Afroamericano/estadística & datos numéricos , Factores de Edad , Anciano , Anciano de 80 o más Años , California/epidemiología , Cambio Climático , Desastres , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Factores de Riesgo , Factores Sexuales , Lesión por Inhalación de Humo/epidemiología , Estados Unidos/epidemiología
10.
Environ Sci Technol ; 51(3): 1467-1476, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28080047

RESUMEN

Southeast Asia has a very high population density and is on a fast track to economic development, with most of the growth in electricity demand currently projected to be met by coal. From a detailed analysis of coal-fired power plants presently planned or under construction in Southeast Asia, we project in a business-as-usual scenario that emissions from coal in the region will triple to 2.6 Tg a-1 SO2 and 2.6 Tg a-1 NOx by 2030, with the largest increases occurring in Indonesia and Vietnam. Simulations with the GEOS-Chem chemical transport model show large resulting increases in surface air pollution, up to 11 µg m-3 for annual mean fine particulate matter (PM2.5) in northern Vietnam and up to 15 ppb for seasonal maximum 1 h ozone in Indonesia. We estimate 19 880 (11 400-28 400) excess deaths per year from Southeast Asian coal emissions at present, increasing to 69 660 (40 080-126 710) by 2030. 9000 of these excess deaths in 2030 are in China. As Chinese emissions from coal decline in coming decades, transboundary pollution influence from rising coal emissions in Southeast Asia may become an increasing issue.


Asunto(s)
Contaminantes Atmosféricos , Centrales Eléctricas/economía , Contaminación del Aire , Asia Sudoriental , Carbón Mineral
11.
Epidemiology ; 28(1): 77-85, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27648592

RESUMEN

BACKGROUND: The health impacts of wildfire smoke, including fine particles (PM2.5), are not well understood and may differ from those of PM2.5 from other sources due to differences in concentrations and chemical composition. METHODS: First, for the entire Western United States (561 counties) for 2004-2009, we estimated daily PM2.5 concentrations directly attributable to wildfires (wildfires-specific PM2.5), using a global chemical transport model. Second, we defined smoke wave as ≥2 consecutive days with daily wildfire-specific PM2.5 > 20 µg/m, with sensitivity analysis considering 23, 28, and 37 µg/m. Third, we estimated the risk of cardiovascular and respiratory hospital admissions associated with smoke waves for Medicare enrollees. We used a generalized linear mixed model to estimate the relative risk of hospital admissions on smoke wave days compared with matched comparison days without wildfire smoke. RESULTS: We estimated that about 46 million people of all ages were exposed to at least one smoke wave during 2004 to 2009 in the Western United States. Of these, 5 million are Medicare enrollees (≥65 years). We found a 7.2% (95% confidence interval: 0.25%, 15%) increase in risk of respiratory admissions during smoke wave days with high wildfire-specific PM2.5 (>37 µg/m) compared with matched non smoke wave days. We did not observe an association between smoke wave days with wildfire-specific PM2.5 ≤ 37 µg/mand respiratory or cardiovascular admissions. Respiratory effects of wildfire-specific PM2.5 may be stronger than that of PM2.5 from other sources. CONCLUSION: Short-term exposure to wildfire-specific PM2.5was associated with risk of respiratory diseases in the elderly population in the Western United States during severe smoke days. See video abstract at, http://links.lww.com/EDE/B137.


Asunto(s)
Hospitalización/estadística & datos numéricos , Material Particulado , Población Rural/estadística & datos numéricos , Humo , Población Urbana/estadística & datos numéricos , Incendios Forestales/estadística & datos numéricos , Anciano , Humanos , Medicare , Medio Oeste de Estados Unidos , Noroeste de Estados Unidos , Sudoeste de Estados Unidos , Estados Unidos , Tiempo (Meteorología)
12.
Environ Sci Technol ; 50(23): 13123-13133, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934278

RESUMEN

We present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.


Asunto(s)
Contaminantes Atmosféricos , Metano , Monitoreo del Ambiente , Texas , Estados Unidos , United States Environmental Protection Agency
13.
Atmos Chem Phys ; 16(21): 13477-13490, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29619044

RESUMEN

Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4-0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5-0.8). However, all retrievals are biased low in the mean by 20-51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

14.
Atmos Chem Phys ; 16(21): 13561-13577, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29619045

RESUMEN

Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.

15.
Clim Change ; 138(3): 655-666, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28642628

RESUMEN

Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM2.5) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term "Smoke Wave," defined as ≥2 consecutive days with high wildfire-specific PM2.5, to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM2.5 standards, wildfires contributed an average of 71.3% of total PM2.5. Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...