Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
GM Crops Food ; 11(4): 206-214, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32552236

RESUMEN

DP23211 maize was genetically modified (GM) to express DvSSJ1 double-stranded RNA and the IPD072Aa protein for control of corn rootworm (Diabrotica spp.). DP23211 maize also expresses the phosphinothricin acetyltransferase (PAT) protein for tolerance to glufosinate herbicide, and the phosphomannose isomerase (PMI) protein that was used as a selectable marker. A multi-location field trial was conducted during the 2018 growing season at 12 sites selected to be representative of the major maize-growing regions of the U.S. and Canada. Standard agronomic endpoints as well as compositional analytes from grain and forage (e.g., proximates, fibers, minerals, amino acids, fatty acids, vitamins, anti-nutrients, secondary metabolites) were evaluated and compared to non-GM near-isoline control maize (control maize) and non-GM commercial maize (reference maize). A small number of agronomic endpoints were statistically significant compared to the control maize, but were not considered to be biologically relevant when adjusted using the false discovery rate method (FDR) or when compared to the range of natural variation established from in-study reference maize. A small number of composition analytes were statistically significant compared to the control maize. These analytes were not statistically significant when adjusted using FDR, and all analyte values fell within the range of natural variation established from in-study reference range, literature range or tolerance interval, indicating that the composition of DP23211 maize grain and forage is substantially equivalent to conventional maize represented by non-GM near-isoline control maize and non-GM commercial maize.


Asunto(s)
Grano Comestible , Zea mays/genética , Aminoácidos , Canadá , Plantas Modificadas Genéticamente
2.
J Agric Food Chem ; 62(40): 9916-26, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25208038

RESUMEN

Compositional analysis is a requisite component of the substantial equivalence framework utilized to assess genetically modified (GM) crop safety. Statistical differences in composition data between GM and non-GM crops require a context in which to determine biological relevance. This context is provided by surveying the natural variation of key nutrient and antinutrient levels within the crop population with a history of safe use. Data accumulated from various genotypes with a history of safe use cultivated in relevant commercial crop-growing environments over multiple seasons are discussed as the appropriate data representative of this natural variation. A model-based parametric tolerance interval approach, which accounts for the correlated and unbalanced data structure of cumulative historical data collected from multisite field studies conducted over multiple seasons, is presented. This paper promotes the application of this tolerance interval approach to generate reference ranges for evaluation of the biological relevance of statistical differences identified during substantial equivalence assessment of a GM crop.


Asunto(s)
Productos Agrícolas , Modelos Teóricos , Plantas Modificadas Genéticamente , Argentina , Canadá , Chile , Interpretación Estadística de Datos , Inocuidad de los Alimentos , Modelos Lineales , Semillas/química , Semillas/genética , Suelo , Estados Unidos , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...