Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(2): 44, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38114825

RESUMEN

α-Amylases are essential biocatalysts representing a billion-dollar market with significant long-term global demand. They have varied applications ranging from detergent, textile, and food sectors such as bakery to, more recently, biofuel industries. Microbial α-amylases have distinct advantages over their plant and animal counterparts owing to generally good activities and better stability at temperature and pH extremes. With the scope of applications expanding, the need for new and improved α-amylases is ever-growing. However, scaling up microbial α-amylase technology from the laboratory to industry for practical applications is impeded by several issues, ranging from mass transfer limitations, low enzyme yields, and energy-intensive product recovery that adds to high production costs. This review highlights the major challenges and prospects for the production of microbial α-amylases, considering the various avenues of industrial bioprocessing such as culture-independent approaches, nutrient optimization, bioreactor operations with design improvements, and product down-streaming approaches towards developing efficient α-amylases with high activity and recyclability. Since the sequence and structure of the enzyme play a crucial role in modulating its functional properties, we have also tried to analyze the structural composition of microbial α-amylase as a guide to its thermodynamic properties to identify the areas that can be targeted for enhancing the catalytic activity and thermostability of the enzyme through varied immobilization or selective enzyme engineering approaches. Also, the utilization of inexpensive and renewable substrates for enzyme production to isolate α-amylases with non-conventional applications has been briefly discussed.


Asunto(s)
Amilasas , alfa-Amilasas , Animales , alfa-Amilasas/química , Amilasas/metabolismo , Temperatura , Estabilidad de Enzimas
2.
Springerplus ; 3: 691, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26034686

RESUMEN

Single cell oil production from sugarcane bagasse hydrolysate by oleaginous yeast Rhodotorula sp. IIP-33 was analyzed using a two stage statistical design approach based on Response Surface Methodology. Variables like pentose sugar, (NH4)2SO4, KH2PO4, yeast extract, pH and temperature were found to influence lipid production significantly. Under optimized condition in a shake flask, yield of lipid was 2.1199 g with fat coefficient of 7.09 which also resembled ~99% similarity to model predicted lipid production. In this paper we are presenting optimized results for production of non polar lipid which could be later deoxygenated into hydrocarbon. A qualitative analyses of selective lipid samples yielded a varying distribution of free acid ranging from C6 to C18, majoring C16:0, C18:0 and C18:1 under different fermentation conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA