Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090305

RESUMEN

Therapeutic small interfering RNA (siRNA) requires sugar and backbone modifications to inhibit nuclease degradation. However, metabolic stabilization by phosphorothioate (PS), the only backbone chemistry used clinically, may be insufficient for targeting extrahepatic tissues. To improve oligonucleotide stabilization, we report the discovery, synthesis and characterization of extended nucleic acid (exNA) consisting of a methylene insertion between the 5'-C and 5'-OH of a nucleoside. exNA incorporation is compatible with common oligonucleotide synthetic protocols and the PS backbone, provides stabilization against 3' and 5' exonucleases and is tolerated at multiple oligonucleotide positions. A combined exNA-PS backbone enhances resistance to 3' exonuclease by ~32-fold over the conventional PS backbone and by >1,000-fold over the natural phosphodiester backbone, improving tissue exposure, tissue accumulation and efficacy in mice, both systemically and in the brain. The improved efficacy and durability imparted by exNA may enable therapeutic interventions in extrahepatic tissues, both with siRNA and with other oligonucleotides such as CRISPR guide RNA, antisense oligonucleotides, mRNA and tRNA.

2.
Nucleic Acid Ther ; 34(4): 164-172, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39023561

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (HTT). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein in vivo and are considered a viable therapeutic strategy. However, the extent to which they silence huntingtin mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) Htt and human (mutant) HTT in a divalent scaffold and delivered to two mouse models of HD. In both models, divalent siRNA sustained lowering of wild-type Htt, but not mutant HTT mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type HTT protein was observed in both models. Subsequent fluorescent in situ hybridization analysis shows that divalent siRNA acts predominantly on cytoplasmic mutant HTT transcripts, leaving clustered mutant HTT transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.


Asunto(s)
Núcleo Celular , Proteína Huntingtina , Enfermedad de Huntington , ARN Mensajero , ARN Interferente Pequeño , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/antagonistas & inhibidores , Animales , Ratones , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , ARN Interferente Pequeño/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Modelos Animales de Enfermedad , Mutación , Silenciador del Gen
3.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38979291

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition, with 20% of familial and 2-3% of sporadic cases linked to mutations in the cytosolic superoxide dismutase (SOD1) gene. Mutant SOD1 protein is toxic to motor neurons, making SOD1 gene lowering a promising approach, supported by preclinical data and the 2023 FDA approval of the GapmeR ASO targeting SOD1, tofersen. Despite the approval of an ASO and the optimism it brings to the field, the pharmacodynamics and pharmacokinetics of therapeutic SOD1 modulation can be improved. Here, we developed a chemically stabilized divalent siRNA scaffold (di-siRNA) that effectively suppresses SOD1 expression in vitro and in vivo. With optimized chemical modification, it achieves remarkable CNS tissue permeation and SOD1 silencing in vivo. Administered intraventricularly, di-siRNASOD1 extended survival in SOD1-G93A ALS mice, surpassing survival previously seen in these mice by ASO modalities, slowed disease progression, and prevented ALS neuropathology. These properties offer an improved therapeutic strategy for SOD1-mediated ALS and may extend to other dominantly inherited neurological disorders.

4.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38774633

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (HTT). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein in vivo and are considered a viable therapeutic strategy. However, the extent to which they silence HTT mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) Htt and human (mutant) HTT in a di-valent scaffold and delivered to two mouse models of HD. In both models, di-valent siRNA sustained lowering of wild-type Htt, but not mutant HTT mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type Htt protein was observed in both models. Subsequent fluorescent in situ hybridization (FISH) analysis shows that di-valent siRNA acts predominantly on cytoplasmic mutant HTT transcripts, leaving clustered mutant HTT transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.

5.
Nucleic Acids Res ; 52(11): 6099-6113, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38726879

RESUMEN

Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.


Asunto(s)
Sistema Nervioso Central , ARN Interferente Pequeño , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Apolipoproteínas E/genética , Sistema Nervioso Central/metabolismo , Silenciador del Gen , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química
6.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187561

RESUMEN

Di-valent short interfering RNA (siRNA) is a promising therapeutic modality that enables sequence-specific modulation of a single target gene in the central nervous system (CNS). To treat complex neurodegenerative disorders, where pathogenesis is driven by multiple genes or pathways, di-valent siRNA must be able to silence multiple target genes simultaneously. Here we present a framework for designing unimolecular "dual-targeting" di-valent siRNAs capable of co-silencing two genes in the CNS. We reconfigured di-valent siRNA - in which two identical, linked siRNAs are made concurrently - to create linear di-valent siRNA - where two siRNAs are made sequentially attached by a covalent linker. This linear configuration, synthesized using commercially available reagents, enables incorporation of two different siRNAs to silence two different targets. We demonstrate that this dual-targeting di-valent siRNA is fully functional in the CNS of mice, supporting at least two months of maximal target silencing. Dual-targeting di-valent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g., Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting di-valent siRNAs against each gene. This work potentiates CNS modulation of virtually any pair of disease-related targets using a simple unimolecular siRNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA