Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260596

RESUMEN

Isolation caused by anthropogenic habitat fragmentation and degradation can destabilize populations. Population demography is shaped by complex interactions among local vital rates, environmental fluctuations, and changing immigration rates. Empirical studies of these interactions are critical for testing theoretical expectations of how populations respond to isolation. We used a 34-year demographic and environmental dataset from a population of Florida Scrub-Jays ( Aphelocoma coerulescens ) that has experienced declining immigration to create mechanistic models linking environmental factors and variation in vital rates to population growth rates over time. We found that the population has remained stable despite declining immigration and increasing inbreeding, owing to a coinciding increase in breeder survival. We find evidence of density-dependent responses of immigration, breeder survival, and fecundity, indicating that interactions between vital rates and local density likely play a role in buffering the population against change. Our study elucidates the interactions between environment and demography that underlie population stability.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37424524

RESUMEN

Species ranges are set by limitations in factors including climate tolerances, habitat use, and dispersal abilities. Understanding the factors governing species range dynamics remains a challenge that is ever more important in our rapidly changing world. Species ranges can shift if environmental changes affect available habitat, or if the niche or habitat connectivity of a species changes. We tested how changes in habitat availability, niche, or habitat connectivity could contribute to divergent range dynamics in a sister-species pair. The great-tailed grackle (Quiscalus mexicanus) has expanded its range northward from Texas to Nebraska in the past 40 years, while its closest relative, the boattailed grackle (Quiscalus major), has remained tied to the coasts of the Atlantic Ocean and the Gulf of Mexico as well as the interior of Florida. We created species distribution and connectivity models trained on citizen science data from 1970-1979 and 2010-2019 to determine how the availability of habitat, the types of habitat occupied, and range-wide connectivity have changed for both species. We found that the two species occupy distinct habitats and that the great-tailed grackle has shifted to occupy a larger breadth of urban, arid environments farther from natural water sources. Meanwhile, the boattailed grackle has remained limited to warm, wet, coastal environments. We found no evidence that changes in habitat connectivity affected the ranges of either species. Overall, our results suggest that the great-tailed grackle has shifted its realized niche as part of its rapid range expansion, while the range dynamics of the boat-tailed grackle may be shaped more by climate change. The expansion in habitats occupied by the great-tailed grackle is consistent with observations that species with high behavioral flexibility can rapidly expand their geographic range by using human-altered habitat. This investigation identifies how opposite responses to anthropogenic change could drive divergent range dynamics, elucidating the factors that have and will continue to shape species ranges.

3.
bioRxiv ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38168246

RESUMEN

Hybrid zones occur in nature when populations with limited reproductive barriers overlap in space. Many hybrid zones persist over time, and different models have been proposed to explain how selection can maintain hybrid zone stability. More empirical studies are needed to elucidate the role of ecological adaptation in maintaining stable hybrid zones. Here, we investigated the role of exogenous factors in maintaining a hybrid zone between western gulls (Larus occidentalis) and glaucous-winged gulls (L. glaucescens). We used ecological niche models (ENMs) and niche similarity tests to quantify and examine the ecological niches of western gulls, glaucous-winged gulls, and their hybrids. We found evidence of niche divergence between all three groups. Our results best support the bounded superiority model, providing further evidence that exogenous selection favoring hybrids may be an important factor in maintaining this stable hybrid zone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...