Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; : 101931, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38796310

RESUMEN

OBJECTIVE: Simultaneous activation of ß2- and ß3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of ß1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel ß2-and ß3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models. METHODS: In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective ß-AR agonist isoprenaline across various rodent ß-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis. RESULTS: Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis. CONCLUSIONS: Our results demonstrate that ATR-127 is a highly effective, novel ß2- and ß3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.

2.
Pharmacol Res Perspect ; 12(1): e1176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332691

RESUMEN

Truncation of the C-terminal tail of the ß2 -AR, transfection of ßARKct or over-expression of a kinase-dead GRK mutant reduces isoprenaline-stimulated glucose uptake, indicating that GRK is important for this response. We explored whether phosphorylation of the ß2 -AR by GRK2 has a role in glucose uptake or if this response is related to the role of GRK2 as a scaffolding protein. CHO-GLUT4myc cells expressing wild-type and mutant ß2 -ARs were generated and receptor affinity for [3 H]-CGP12177A and density of binding sites determined together with the affinity of isoprenaline and BRL37344. Following receptor activation by ß2 -AR agonists, cAMP accumulation, GLUT4 translocation, [3 H]-2-deoxyglucose uptake, and ß2 -AR internalization were measured. Bioluminescence resonance energy transfer was used to investigate interactions between ß2 -AR and ß-arrestin2 or between ß2 -AR and GRK2. Glucose uptake after siRNA knockdown or GRK inhibitors was measured in response to ß2 -AR agonists. BRL37344 was a poor partial agonist for cAMP generation but displayed similar potency and efficacy to isoprenaline for glucose uptake and GLUT4 translocation. These responses to ß2 -AR agonists occurred in CHO-GLUT4myc cells expressing ß2 -ARs lacking GRK or GRK/PKA phosphorylation sites as well as in cells expressing the wild-type ß2 -AR. However, ß2 -ARs lacking phosphorylation sites failed to recruit ß-arrestin2 and did not internalize. GRK2 knock-down or GRK2 inhibitors decreased isoprenaline-stimulated glucose uptake in rat L6 skeletal muscle cells. Thus, GRK phosphorylation of the ß2 -AR is not associated with isoprenaline- or BRL37344-stimulated glucose uptake. However, GRKs acting as scaffold proteins are important for glucose uptake as GRK2 knock-down or GRK2 inhibition reduces isoprenaline-stimulated glucose uptake.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G , Glucosa , Ratas , Animales , Isoproterenol/farmacología , Glucosa/metabolismo , Receptores Acoplados a Proteínas G , Receptores Adrenérgicos
3.
Mol Pharmacol ; 101(4): 246-256, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35125345

RESUMEN

Specialized proresolving mediators (SPMs) and their cognate G protein-coupled receptors are implicated in autoimmune disorders, including chronic inflammation, rheumatoid arthritis, systemic scleroderma, and lupus erythematosus. To date, six G protein-coupled receptors (GPCRs) have been paired with numerous endogenous and synthetic ligands. However, the function and downstream signaling of these receptors remains unclear. To address this knowledge gap, we systematically expressed each receptor in a human embryonic kindney 293 (HEK293)-Flp-In-CD8a-FLAG cell system. Each receptor was pharmacologically characterized with both synthetic and putative endogenous ligands across different signaling assays, covering both G protein-dependent (Gs, Gi, and Gq) and independent mechanisms (ß-arrestin2 recruitment). Three orphan GPCRs previously identified as SPM receptors (GPR 18, GPR32 and GPR37) failed to express in HEK 293 cells. Although we were unsuccessful in identifying an endogenous ligand for formyl peptide receptor 2 (FPR2)/lipoxin A4 receptor (ALX), with only a modest response to N-formylmethionine-leucyl-phenylalanine (fMLP), we did reveal clear signaling bias away from extracelluar signal-related kinase (ERK) 1/2 phosphorylation for the clinically tested agonist N-(2-{[4-(1,1-difluoroethyl)-1,3-oxazol-2-yl]methyl}-2H-1,2,3-triazol-4-yl)-2-methyl-5-(3-methylphenyl)-1,3-oxazole-4-carboxamide (ACT-389949), adding further evidence for its poor efficacy in two phase I studies. We also identified neuroprotectin D1 as a new leukotriene B4 receptor 1 (BLT1) agonist, implying an alternative target for the neuroprotective effects of the ligand. We confirmed activity for resolvin E1 (RvE1) at BLT1 but failed to observe any response at the chemerin1 receptor. This study provides some much-needed clarity around published receptor-ligand pairings but indicates that the expression and function of these SPM GPCRs remains very much context-dependent. In addition, the identification of signaling bias at FPR2/ALX may assist in guiding design of new FPR2/ALX agonists for the treatment of autoimmune disorders. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to comprehensibly show how several natural mediators and synthetic ligands signal through three specialized proresolving mediator GPCRs using multiple ligands from different classes across four-six endpoint signaling assays. This study discovers new ligand pairings, refutes others, reveals poly-pharmacology, and identifies biased agonism in formyl peptide receptor 2/lipoxin A4 receptor pharmacology. This study highlights the potential of these receptors in treating specific autoimmune diseases, including rheumatoid arthritis, systemic scleroderma, and systemic lupus erythematosus.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Esclerodermia Sistémica , Células HEK293 , Humanos , Ligandos , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-34782333

RESUMEN

INTRODUCTION: A potential role for the orphan G protein-coupled receptor, GPR21, in linking immune cell infiltration into tissues and obesity-induced insulin resistance has been proposed, although limited studies in mice are complicated by non-selective deletion of Gpr21. RESEARCH DESIGN AND METHODS: We hypothesized that a Gpr21-selective knockout mouse model, coupled with type 2 diabetes patient samples, would clarify these issues and enable clear assessment of GPR21 as a potential therapeutic target. RESULTS: High-fat feeding studies in Gpr21-/- mice revealed improved glucose tolerance and modest changes in inflammatory gene expression. Gpr21-/- monocytes and intraperitoneal macrophages had selectively impaired chemotactic responses to monocyte chemoattractant protein (MCP)-1, despite unaltered expression of Ccr2. Further genotypic analysis revealed that chemotactic impairment was due to dysregulated monocyte polarization. Patient samples revealed elevated GPR21 expression in peripheral blood mononuclear cells in type 2 diabetes, which was correlated with both %HbA1c and fasting plasma glucose levels. CONCLUSIONS: Collectively, human and mouse data suggest that GPR21 influences both glucose homeostasis and MCP-1/CCL2-CCR2-driven monocyte migration. However, a Gpr21-/- bone marrow transplantation and high-fat feeding study in mice revealed no effect on glucose homeostasis, suggesting that there is no (or limited) overlap in the mechanism involved for monocyte-driven inflammation and glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Quimiocina CCL2/genética , Diabetes Mellitus Tipo 2/genética , Glucosa , Homeostasis , Humanos , Resistencia a la Insulina/genética , Leucocitos Mononucleares , Ratones , Receptores CCR2/genética , Receptores Acoplados a Proteínas G/genética
6.
Biochem Pharmacol ; 188: 114560, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33844984

RESUMEN

Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α1A-AR) in the cardiovascular system and the potential to influence function/signalling activities. GPR55 and α1A-AR mediated changes in both cardiac and vascular function was assessed in male wild-type (WT) and GPR55 homozygous knockout (GPR55-/-) mice by pressure volume loop analysis and isolated vessel myography, respectively. Dimerization of GPR55 with the α1A-AR was examined in transfected Chinese hamster ovary-K1 (CHO-K1) cells via Bioluminescence Resonance Energy Transfer (BRET). GPR55 and α1A-AR mediated signalling (extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation) was investigated in neonatal rat ventricular cardiomyocytes using AlphaScreen proximity assays. GPR55-/- mice exhibited both enhanced pressor and inotropic responses to A61603 (α1A-AR agonist), while in isolated vessels, A61603 induced vasoconstriction was attenuated by a GPR55-dependent mechanism. Conversely, GPR55-mediated vasorelaxation was not altered by pharmacological blockade of α1A-ARs with tamsulosin. While cellular studies demonstrated that GPR55 and α1A-AR failed to dimerize, pharmacological blockade of GPR55 altered α1A-AR mediated signalling and reduced ERK1/2 phosphorylation. Taken together, this study provides evidence that GPR55 and α1A-AR do not dimerize to form heteromers, but do interact at the signalling level to modulate the function of α1A-AR in the cardiovascular system.


Asunto(s)
Multimerización de Proteína/fisiología , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Cannabinoides/deficiencia , Receptores de Cannabinoides/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Animales Recién Nacidos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Embarazo , Multimerización de Proteína/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
Front Pharmacol ; 12: 628060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776771

RESUMEN

Adenosine A1 receptors (A1R) are a potential target for cardiac injury treatment due to their cardioprotective/antihypertrophic actions, but drug development has been hampered by on-target side effects such as bradycardia and altered renal hemodynamics. Biased agonism has emerged as an attractive mechanism for A1R-mediated cardioprotection that is haemodynamically safe. Here we investigate the pre-clinical pharmacology, efficacy and side-effect profile of the A1R agonist neladenoson, shown to be safe but ineffective in phase IIb trials for the treatment of heart failure. We compare this agent with the well-characterized, pan-adenosine receptor (AR) agonist NECA, capadenoson, and the A1R biased agonist VCP746, previously shown to be safe and cardioprotective in pre-clinical models of heart failure. We show that like VCP746, neladenoson is biased away from Ca2+ influx relative to NECA and the cAMP pathway at the A1R, a profile predictive of a lack of adenosine-like side effects. Additionally, neladenoson was also biased away from the MAPK pathway at the A1R. In contrast to VCP746, which displays more 'adenosine-like' signaling at the A2BR, neladenoson was a highly selective A1R agonist, with biased, weak agonism at the A2BR. Together these results show that unwanted hemodynamic effects of A1R agonists can be avoided by compounds biased away from Ca2+ influx relative to cAMP, relative to NECA. The failure of neladenoson to reach primary endpoints in clinical trials suggests that A1R-mediated cAMP inhibition may be a poor indicator of effectiveness in chronic heart failure. This study provides additional information that can aid future screening and/or design of improved AR agonists that are safe and efficacious in treating heart failure in patients.

8.
Pharmacol Res Perspect ; 8(5): e00643, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32813332

RESUMEN

The ß3 -adrenoceptor agonist mirabegron is approved for use for overactive bladder and has been purported to be useful in the treatment of obesity-related metabolic diseases in humans, including those involving disturbances of glucose homeostasis. We investigated the effect of mirabegron on glucose homeostasis with in vitro and in vivo models, focusing on its selectivity at ß-adrenoceptors, ability to cause browning of white adipocytes, and the role of UCP1 in glucose homeostasis. In mouse brown, white, and brite adipocytes, mirabegron-mediated effects were examined on cyclic AMP, UCP1 mRNA, [3 H]-2-deoxyglucose uptake, cellular glycolysis, and O2 consumption. Mirabegron increased cyclic AMP levels, UCP1 mRNA content, glucose uptake, and cellular glycolysis in brown adipocytes, and these effects were either absent or reduced in white adipocytes. In brite adipocytes, mirabegron increased cyclic AMP levels and UCP1 mRNA content resulting in increased UCP1-mediated oxygen consumption, glucose uptake, and cellular glycolysis. The metabolic effects of mirabegron in both brown and brite adipocytes were primarily due to actions at ß3 -adrenoceptors as they were largely absent in adipocytes derived from ß3 -adrenoceptor knockout mice. In vivo, mirabegron increased whole body oxygen consumption, glucose uptake into brown and inguinal white adipose tissue, and improved glucose tolerance, all effects that required the presence of the ß3 -adrenoceptor. Furthermore, in UCP1 knockout mice, the effects of mirabegron on glucose tolerance were attenuated. Thus, mirabegron had effects on cellular metabolism in adipocytes that improved glucose handling in vivo, and were primarily due to actions at the ß3 -adrenoceptor.


Asunto(s)
Acetanilidas/administración & dosificación , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/administración & dosificación , Glucólisis/efectos de los fármacos , Tiazoles/administración & dosificación , Proteína Desacopladora 1/genética , Acetanilidas/farmacología , Adenosina Monofosfato/metabolismo , Adipocitos Beige/efectos de los fármacos , Adipocitos Marrones/efectos de los fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Células CHO , Células Cultivadas , Cricetulus , Desoxiglucosa/metabolismo , Técnicas de Inactivación de Genes , Masculino , Ratones , Oxígeno/metabolismo , Tiazoles/farmacología
9.
J Am Soc Nephrol ; 30(11): 2191-2207, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511361

RESUMEN

BACKGROUND: Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS: We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS: The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS: These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.


Asunto(s)
Riñón/patología , Miocardio/patología , Miofibroblastos/fisiología , Receptor de Angiotensina Tipo 1/fisiología , Receptor de Angiotensina Tipo 2/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores de Péptidos/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Células Cultivadas , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas , Proteínas Recombinantes , Relaxina/fisiología , Tetrazoles/uso terapéutico
10.
Br J Pharmacol ; 176(14): 2339-2342, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31240712

RESUMEN

LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Asunto(s)
Receptores Adrenérgicos/metabolismo , Animales , Humanos
11.
Neuropharmacology ; 144: 244-255, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359639

RESUMEN

The histamine H3 receptor is a G protein-coupled receptor (GPCR) drug target that is highly expressed in the CNS, where it acts as both an auto- and hetero-receptor to regulate neurotransmission. As such, it has been considered as a relevant target in disorders as varied as Alzheimer's disease, schizophrenia, neuropathic pain and attention deficit hyperactivity disorder. A range of competitive antagonists/inverse agonists have progressed into clinical development, with pitolisant approved for the treatment of narcolepsy. Given the breadth of compounds developed and potential therapeutic indications, we assessed the comparative pharmacology of six investigational histamine H3 agents, including pitolisant, using native tissue and recombinant cells. Whilst all of the compounds tested displayed robust histamine H3 receptor inverse agonism and did not differentiate between the main H3 receptor splice variants, they displayed a wide range of affinities and kinetic properties, and included rapidly dissociating (pitolisant, S 38093-2, ABT-239) and slowly dissociating (GSK189254, JNJ-5207852, PF-3654746) agents. S 38093-2 had the lowest histamine H3 receptor affinity (pKB values 5.7-6.2), seemingly at odds with previously reported, potent in vivo activity in models of cognition. We show here that at pro-cognitive and anti-hyperalgesic/anti-allodynic doses, S 38093-2 preferentially occupies the mouse sigma-1 receptor in vivo, only engaging the histamine H3 receptor at doses associated with wakefulness promotion and neurotransmitter (histamine, ACh) release. Furthermore, pitolisant, ABT-239 and PF-3654746 also displayed appreciable sigma-1 receptor affinity, suggesting that this property differentiates clinically evaluated histamine H3 receptor antagonists and may play a role in their efficacy.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3/farmacocinética , Receptores Histamínicos H3/metabolismo , Receptores sigma/metabolismo , Animales , Animales no Consanguíneos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Cricetulus , Cobayas , Antagonistas de los Receptores Histamínicos H3/química , Antagonistas de los Receptores Histamínicos H3/farmacología , Masculino , Ratones , Isoformas de Proteínas , Ratas Wistar , Receptores Histamínicos H3/genética , Conducto Deferente/efectos de los fármacos , Conducto Deferente/metabolismo , Receptor Sigma-1
12.
Br J Pharmacol ; 175(21): 4005-4008, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30302756

RESUMEN

LINKED ARTICLES: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.


Asunto(s)
Receptores Acoplados a Proteínas G , Animales , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-29910772

RESUMEN

The recruitment of brite (or beige) adipocytes has been advocated as a means to combat obesity, due to their ability to phenotypically resemble brown adipocytes (BA). Lineage studies indicate that brite adipocytes are formed by differentiation of precursor cells or by direct conversion of existing white adipocytes, depending on the adipose depot examined. We have systematically compared the gene expression profile and a functional output (oxygen consumption) in mouse adipocytes cultured from two contrasting depots, namely interscapular brown adipose tissue, and inguinal white adipose tissue (iWAT), following treatment with a known browning agent, the peroxisome proliferator-activated receptor (PPARγ) activator rosiglitazone. Prototypical BA readily express uncoupling protein (UCP)1, and upstream regulators including the ß3-adrenoceptor and transcription factors involved in energy homeostasis. Adipocytes from inguinal WAT display maximal UCP1 expression and mitochondrial uncoupling only when treated with a combination of the PPARγ activator rosiglitazone and a ß3-adrenoceptor agonist. In conclusion, brite adipocytes are fully activated only when a browning agent (rosiglitazone) and a thermogenic agent (ß3-adrenoceptor agonist) are added in combination. The presence of rosiglitazone throughout the 7-day culture period partially masks the effects of ß3-adrenoceptor signaling in inguinal white adipocyte cultures, whereas including rosiglitazone only for the first 3 days promotes robust ß3-adrenoceptor expression and provides an improved window for detection of ß3-adrenoceptor responses.

14.
PLoS One ; 13(5): e0197177, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746559

RESUMEN

Monocyte-like cell lines (MCLCs), including THP-1, HL-60 and U-937 cells, are used routinely as surrogates for isolated human peripheral blood mononuclear cells (PBMCs). To systematically evaluate these immortalised cells and PBMCs as model systems to study inflammation relevant to the pathogenesis of type II diabetes and immuno-metabolism, we compared mRNA expression of inflammation-relevant genes, cell surface expression of cluster of differentiation (CD) markers, and chemotactic responses to inflammatory stimuli. Messenger RNA expression analysis suggested most genes were present at similar levels across all undifferentiated cells, though notably, IDO1, which encodes for indoleamine 2,3-dioxygenase and catabolises tryptophan to kynureninase (shown to be elevated in serum from diabetic patients), was not expressed in any PMA-treated MCLC, but present in GM-CSF-treated PBMCs. There was little overall difference in the pattern of expression of CD markers across all cells, though absolute expression levels varied considerably and the correlation between MCLCs and PBMCs was improved upon MCLC differentiation. Functionally, THP-1 and PBMCs migrated in response to chemoattractants in a transwell assay, with varying sensitivity to MCP-1, MIP-1α and LTB-4. However, despite similar gene and CD expression profiles, U-937 cells were functionally impaired as no migration was observed to any chemoattractant. Our analysis reveals that the MCLCs examined only partly replicate the genotypic and phenotypic properties of human PBMCs. To overcome such issues a universal differentiation protocol should be implemented for these cell lines, similar to those already used with isolated monocytes. Although not perfect, in our hands the THP-1 cells represent the closest, simplified surrogate model of PBMCs for study of inflammatory cell migration.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Regulación de la Expresión Génica , Enfermedades Metabólicas/metabolismo , Monocitos/metabolismo , Antígenos de Diferenciación/genética , Células HL-60 , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/patología , Monocitos/patología , Células THP-1 , Células U937
15.
Br J Pharmacol ; 175(21): 4095-4108, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29714810

RESUMEN

BACKGROUND AND PURPOSE: Strontium ranelate, a drug approved and until recently used for the treatment of osteoporosis, mediates its effects on bone at least in part via the calcium-sensing (CaS) receptor. However, it is not known whether bone-targeted CaS receptor positive allosteric modulators (PAMs; calcimimetics) represent an alternative (or adjunctive) therapy to strontium (Sr2+ o ). EXPERIMENTAL APPROACH: We assessed three structurally distinct calcimimetics [cinacalcet, AC-265347 and a benzothiazole tri-substituted urea (BTU-compound 13)], alone and in combination with extracellular calcium (Ca2+ o ) or Sr2+ o , in G protein-dependent signalling assays and trafficking experiments in HEK293 cells and their effects on cell differentiation, tartrate-resistant acid phosphatase (TRAP) activity and hydroxyapatite resorption assays in human blood-derived osteoclasts. KEY RESULTS: Sr2+ o activated CaS receptor-dependent signalling in HEK293 cells in a similar manner to Ca2+ o , and inhibited the maturation, TRAP expression and hydroxyapatite resorption capacity of human osteoclasts. Calcimimetics potentiated Ca2+ o - and Sr2+ o -mediated CaS receptor signalling in HEK293 cells with distinct biased profiles, and only cinacalcet chaperoned an endoplasmic reticulum-retained CaS mutant receptor to the cell surface in HEK293 cells, indicative of a conformational state different from that engendered by AC-265347 and BTU-compound 13. Intriguingly, only cinacalcet modulated human osteoclast function, reducing TRAP activity and profoundly inhibiting resorption. CONCLUSION AND IMPLICATIONS: Although AC-265347 and BTU-compound 13 potentiated Ca2+ o - and Sr2+ o -induced CaS receptor activation, they neither replicated nor potentiated the ability of Sr2+ o to inhibit human osteoclast function. In contrast, the FDA-approved calcimimetic, cinacalcet, inhibited osteoclast TRAP activity and hydroxyapatite resorption, which may contribute to its clinical effects on bone mineral density LINKED ARTICLES: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.


Asunto(s)
Calcimiméticos/farmacología , Cinacalcet/farmacología , Osteoclastos/efectos de los fármacos , Receptores Sensibles al Calcio/antagonistas & inhibidores , Estroncio/farmacología , Regulación Alostérica/efectos de los fármacos , Calcimiméticos/química , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cinacalcet/química , Células HEK293 , Humanos , Estructura Molecular , Osteoclastos/metabolismo , Receptores Sensibles al Calcio/metabolismo , Estroncio/química
16.
J Mol Endocrinol ; 60(3): 213-224, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29535183

RESUMEN

Insulin-like peptide 5 (INSL5) is a newly discovered gut hormone expressed in colonic enteroendocrine L-cells but little is known about its biological function. Here, we show using RT-qPCR and in situ hybridisation that Insl5 mRNA is highly expressed in the mouse colonic mucosa, colocalised with proglucagon immunoreactivity. In comparison, mRNA for RXFP4 (the cognate receptor for INSL5) is expressed in various mouse tissues, including the intestinal tract. We show that the human enteroendocrine L-cell model NCI-H716 cell line, and goblet-like colorectal cell lines SW1463 and LS513 endogenously express RXFP4. Stimulation of NCI-H716 cells with INSL5 produced phosphorylation of ERK1/2 (Thr202/Tyr204), AKT (Thr308 and Ser473) and S6RP (Ser235/236) and inhibited cAMP production but did not stimulate Ca2+ release. Acute INSL5 treatment had no effect on GLP-1 secretion mediated by carbachol or insulin, but modestly inhibited forskolin-stimulated GLP-1 secretion in NCI-H716 cells. However, chronic INSL5 pre-treatment (18 h) increased basal GLP-1 secretion and prevented the inhibitory effect of acute INSL5 administration. LS513 cells were found to be unresponsive to INSL5 despite expressing RXFP4 Another enteroendocrine L-cell model, mouse GLUTag cells did not express detectable levels of Rxfp4 and were unresponsive to INSL5. This study provides novel insights into possible autocrine/paracrine roles of INSL5 in the intestinal tract.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Transducción de Señal , Animales , Línea Celular , Colon/metabolismo , AMP Cíclico/biosíntesis , Perfilación de la Expresión Génica , Células Caliciformes/metabolismo , Humanos , Insulina/genética , Ratones Endogámicos C57BL , Fosforilación , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo
17.
Pharmacol Rev ; 70(1): 39-67, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233848

RESUMEN

G protein-coupled receptors (GPCRs) continue to be important discovery targets for the treatment of type 2 diabetes mellitus (T2DM). Many GPCRs are directly involved in the development of insulin resistance and ß-cell dysfunction, and in the etiology of inflammation that can lead to obesity-induced T2DM. This review summarizes the current literature describing a number of well-validated GPCR targets, but also outlines several new and promising targets for drug discovery. We highlight the importance of understanding the role of these receptors in the disease pathology, and their basic pharmacology, which will pave the way to the development of novel pharmacological probes that will enable these targets to fulfill their promise for the treatment of these metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Terapia Molecular Dirigida , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
18.
Biochem Pharmacol ; 148: 27-40, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29175420

RESUMEN

The capacity of G protein-coupled receptors to modulate mechanistic target of rapamycin (mTOR) activity is a newly emerging paradigm with the potential to link cell surface receptors with cell survival. Cardiomyocyte viability is linked to signalling pathways involving Akt and mTOR, as well as increased glucose uptake and utilization. Our aim was to determine whether the α1A-adrenoceptor (AR) couples to these protective pathways, and increased glucose uptake. We characterised α1A-AR signalling in CHO-K1 cells co-expressing the human α1A-AR and GLUT4 (CHOα1AGLUT4myc) and in neonatal rat ventricular cardiomyocytes (NRVM), and measured glucose uptake, intracellular Ca2+ mobilization, and phosphorylation of mTOR, Akt, 5' adenosine monophosphate-activated kinase (AMPK) and S6 ribosomal protein (S6rp). In both systems, noradrenaline and the α1A-AR selective agonist A61603 stimulated glucose uptake by parallel pathways involving mTOR and AMPK, whereas another α1-AR agonist oxymetazoline increased glucose uptake predominantly by mTOR. All agonists promoted phosphorylation of mTOR at Ser2448 and Ser2481, indicating activation of both mTORC1 and mTORC2, but did not increase Akt phosphorylation. In CHOα1AGLUT4myc cells, siRNA directed against rictor but not raptor suppressed α1A-AR mediated glucose uptake. We have thus identified mTORC2 as a key component in glucose uptake stimulated by α1A-AR agonists. Our findings identify a novel link between the α1A-AR, mTORC2 and glucose uptake, that have been implicated separately in cardiomyocyte survival. Our studies provide an improved framework for examining the utility of α1A-AR selective agonists as tools in the treatment of cardiac dysfunction.


Asunto(s)
Glucosa/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células CHO , Calcimicina , Calcio , Cricetinae , Cricetulus , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Norepinefrina , Fosforilación , Prazosina/metabolismo , Prazosina/farmacología , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/genética
19.
Cell Signal ; 42: 54-66, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28970184

RESUMEN

Recruitment and activation of brite (or beige) adipocytes has been advocated as a potential avenue for manipulating whole-body energy expenditure. Despite numerous studies illustrating the differences in gene and protein markers between brown, brite and white adipocytes, there is very little information on the adrenergic regulation and function of these brite adipocytes. We have compared the functional (cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, extracellular acidification rates, calcium influx) profiles of mouse adipocytes cultured from three contrasting depots, namely interscapular brown adipose tissue, and inguinal or epididymal white adipose tissues, following chronic treatment with the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone. Prototypical brown adipocytes readily express ß3-adrenoceptors, and ß3-adrenoceptor stimulation increases cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, and extracellular acidification rates. Treatment of brown adipocytes with rosiglitazone increases uncoupling protein 1 (UCP1) levels, and increases ß3-adrenoceptor mitochondrial function but does not affect glucose uptake responses. In contrast, inguinal white adipocytes only express UCP1 and ß3-adrenoceptors following rosiglitazone treatment, which results in an increase in all ß3-adrenoceptor-mediated functions. The effect of rosiglitazone in epididymal white adipocytes, was much lower compared to inguinal white adipocytes. Rosiglitazone also increased α1-adrenoceptor mediated increases in calcium influx and glucose uptake (but not mitochondrial function) in inguinal and epididymal white adipocytes. In conclusion, the PPARγ agonist rosiglitazone promotes the induction and function of brite adipocytes cultured from inguinal and epididymal white adipose depots.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Mitocondrias/efectos de los fármacos , Receptores Adrenérgicos beta 3/genética , Tiazolidinedionas/farmacología , Adipocitos Beige/citología , Adipocitos Beige/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Adipocitos Blancos/citología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Animales , Transporte Biológico , AMP Cíclico/agonistas , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Especificidad de Órganos , Consumo de Oxígeno/efectos de los fármacos , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Cultivo Primario de Células , Receptores Adrenérgicos beta 3/metabolismo , Rosiglitazona , Transducción de Señal , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
J Biol Chem ; 292(36): 15143-15158, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28663369

RESUMEN

Pertussis-like toxins are secreted by several bacterial pathogens during infection. They belong to the AB5 virulence factors, which bind to glycans on host cell membranes for internalization. Host cell recognition and internalization are mediated by toxin B subunits sharing a unique pentameric ring-like assembly. Although the role of pertussis toxin in whooping cough is well-established, pertussis-like toxins produced by other bacteria are less studied, and their mechanisms of action are unclear. Here, we report that some extra-intestinal Escherichia coli pathogens (i.e. those that reside in the gut but can spread to other bodily locations) encode a pertussis-like toxin that inhibits mammalian cell growth in vitro We found that this protein, EcPlt, is related to toxins produced by both nontyphoidal and typhoidal Salmonella serovars. Pertussis-like toxins are secreted as disulfide-bonded heterohexamers in which the catalytic ADP-ribosyltransferase subunit is activated when exposed to the reducing environment in mammalian cells. We found here that the reduced EcPlt exhibits large structural rearrangements associated with its activation. We noted that inhibitory residues tethered within the NAD+-binding site by an intramolecular disulfide in the oxidized state dissociate upon the reduction and enable loop restructuring to form the nucleotide-binding site. Surprisingly, although pertussis toxin targets a cysteine residue within the α subunit of inhibitory trimeric G-proteins, we observed that activated EcPlt toxin modifies a proximal lysine/asparagine residue instead. In conclusion, our results reveal the molecular mechanism underpinning activation of pertussis-like toxins, and we also identified differences in host target specificity.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/farmacología , Escherichia coli/química , Proteínas de Unión al GTP Heterotriméricas/antagonistas & inhibidores , Toxina del Pertussis/química , Animales , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Modelos Moleculares , Relación Estructura-Actividad , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...