Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 356(6341)2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28572336

RESUMEN

In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized.


Asunto(s)
Sedimentos Geológicos/química , Lagos , Marte , Oxidación-Reducción
2.
Science ; 353(6294): 55-8, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27365444

RESUMEN

Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter- to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

3.
Geobiology ; 14(6): 556-574, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27474373

RESUMEN

Microbial pinnacles in ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica, extend from the base of the ice to more than 50 m water depth. The distribution of microbial communities, their photosynthetic potential, and pinnacle morphology affects the local accumulation of biomass, which in turn shapes pinnacle morphology. This feedback, plus environmental stability, promotes the growth of elaborate microbial structures. In Lake Vanda, all mats sampled from greater than 10 m water depth contained pinnacles with a gradation in size from <1-mm-tall tufts to pinnacles that were centimeters tall. Small pinnacles were cuspate, whereas larger ones had variable morphology. The largest pinnacles were up to ~30 cm tall and had cylindrical bases and cuspate tops. Pinnacle biomass was dominated by cyanobacteria from the morphological and genomic groups Leptolyngbya, Phormidium, and Tychonema. The photosynthetic potential of these cyanobacterial communities was high to depths of several millimeters into the mat based on PAM fluorometry, and sufficient light for photosynthesis penetrated ~5 mm into pinnacles. The distribution of photosynthetic potential and its correlation to pinnacle morphology suggests a working model for pinnacle growth. First, small tufts initiate from random irregularities in prostrate mat. Some tufts grow into pinnacles over the course of ~3 years. As pinnacles increase in size and age, their interiors become colonized by a more diverse community of cyanobacteria with high photosynthetic potential. Biomass accumulation within this subsurface community causes pinnacles to swell, expanding laminae thickness and creating distinctive cylindrical bases and cuspate tops. This change in shape suggests that pinnacle morphology emerges from a specific distribution of biomass accumulation that depends on multiple microbial communities fixing carbon in different parts of pinnacles. Similarly, complex patterns of biomass accumulation may be reflected in the morphology of elaborate ancient stromatolites.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Lagos/microbiología , Regiones Antárticas , Biomasa , Cianobacterias/metabolismo , Cubierta de Hielo , Fotosíntesis
4.
J Geophys Res Planets ; 120(3): 495-514, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26690960

RESUMEN

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

5.
Science ; 350(6257): aac7575, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26450214

RESUMEN

The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).


Asunto(s)
Lagos , Marte , Clima , Exhumación , Paleontología
6.
Geobiology ; 13(4): 373-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25867791

RESUMEN

Modern decimeter-scale columnar stromatolites from Lake Joyce, Antarctica, show a change in branching pattern during a period of lake level rise. Branching patterns correspond to a change in cyanobacterial community composition as preserved in authigenic calcite crystals. The transition in stromatolite morphology is preserved by mineralized layers that contain microfossils and cylindrical molds of cyanobacterial filaments. The molds are composed of two populations with different diameters. Large diameter molds (>2.8 µm) are abundant in calcite forming the oldest stromatolite layers, but are absent from younger layers. In contrast, <2.3 µm diameter molds are common in all stromatolites layers. Loss of large diameter molds corresponds to the transition from smooth-sided stromatolitic columns to branched and irregular columns. Mold diameters are similar to trichome diameters of the four most abundant living cyanobacteria morphotypes in Lake Joyce: Phormidium autumnale morphotypes have trichome diameters >3.5 µm, whereas Leptolyngbya antarctica, L. fragilis, and Pseudanabaena frigida morphotypes have diameters <2.3 µm. P. autumnale morphotypes were only common in mats at <12 m depth. Mats containing abundant P. autumnale morphotypes were smooth, whereas mats with few P. autumnale morphotypes contained small peaks and protruding bundles of filaments, suggesting that the absence of P. autumnale morphotypes allowed small-scale topography to develop on mats. Comparisons of living filaments and mold diameters suggest that P. autumnale morphotypes were present early in stromatolite growth, but disappeared from the community through time. We hypothesize that the mat-smoothing behavior of P. autumnale morphotypes inhibited nucleation of stromatolite branches. When P. autumnale morphotypes were excluded from the community, potentially reflecting a rise in lake level, short-wavelength roughness provided nuclei for stromatolite branches. This growth history provides a conceptual model for initiation of branched stromatolite growth resulting from a change in microbial community composition.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Lagos/microbiología , Regiones Antárticas
7.
Geobiology ; 13(4): 357-72, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25809931

RESUMEN

Modern microbialites in Pavilion Lake, BC, provide an analog for ancient non-stromatolitic microbialites that formed from in situ mineralization. Because Pavilion microbialites are mineralizing under the influence of microbial communities, they provide insights into how biological processes influence microbialite microfabrics and mesostructures. Hemispherical nodules and micrite-microbial crusts are two mesostructures within Pavilion microbialites that are directly associated with photosynthetic communities. Both filamentous cyanobacteria in hemispherical nodules and branching filamentous green algae in micrite-microbial crusts were associated with calcite precipitation at microbialite surfaces and with characteristic microfabrics in the lithified microbialite. Hemispherical nodules formed at microbialite surfaces when calcite precipitated around filamentous cyanobacteria with a radial growth habit. The radial filament pattern was preserved within the microbialite to varying degrees. Some subsurface nodules contained well-defined filaments, whereas others contained only dispersed organic inclusions. Variation in filament preservation is interpreted to reflect differences in timing and amount of carbonate precipitation relative to heterotrophic decay, with more defined filaments reflecting greater lithification prior to degradation than more diffuse filaments. Micrite-microbial crusts produce the second suite of microfabrics and form in association with filamentous green algae oriented perpendicular to the microbialite surface. Some crusts include calcified filaments, whereas others contained voids that reflect the filamentous community in shape, size, and distribution. Pavilion microbialites demonstrate that microfabric variation can reflect differences in lithification processes and microbial metabolisms as well as microbial community morphology and organization. Even when the morphology of individual filaments or cells is not well preserved, the microbial growth habit can be captured in mesoscale microbialite structures. These results suggest that when petrographic preservation is extremely good, ancient microbialite growth structures and microfabrics can be interpreted in the context of variation in community organization, community composition, and lithification history. Even in the absence of distinct microbial microfabrics, mesostructures can capture microbial community morphology.


Asunto(s)
Carbonatos/química , Chlorophyta/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Lagos/microbiología , Colombia Británica , Chlorophyta/ultraestructura , Cianobacterias/ultraestructura , Fósiles/anatomía & histología , Fósiles/microbiología , Microscopía Electrónica de Rastreo
8.
Science ; 343(6169): 1242777, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324272

RESUMEN

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Agua , Bahías , Carbono/análisis , Sedimentos Geológicos/análisis , Sedimentos Geológicos/clasificación , Hidrógeno/análisis , Concentración de Iones de Hidrógeno , Hierro/análisis , Hierro/química , Nitrógeno/análisis , Oxidación-Reducción , Oxígeno/análisis , Fósforo/análisis , Salinidad , Azufre/análisis , Azufre/química
9.
Science ; 343(6169): 1247166, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324273

RESUMEN

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced (3)He, (21)Ne, and (36)Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.


Asunto(s)
Radiación Cósmica , Evolución Planetaria , Exobiología , Medio Ambiente Extraterrestre/química , Marte , Gases Nobles/análisis , Biomarcadores/análisis , Biomarcadores/química , Sedimentos Geológicos , Isótopos/análisis , Isótopos/química , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Dosis de Radiación , Datación Radiométrica , Propiedades de Superficie
10.
Science ; 343(6169): 1243480, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324271

RESUMEN

Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.


Asunto(s)
Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/química , Marte , Minerales/química , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/química , Sedimentos Geológicos/análisis , Minerales/análisis , Silicatos/análisis , Silicatos/química , Compuestos de Silicona/análisis , Compuestos de Silicona/química
11.
Science ; 343(6169): 1244734, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324274

RESUMEN

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/química , Marte , Bahías , Sulfato de Calcio/análisis , Sulfato de Calcio/química , Cloro/análisis , Cloro/química , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/química , Halógenos/análisis , Halógenos/química , Concentración de Iones de Hidrógeno , Hierro/análisis , Hierro/química , Magnesio/análisis , Magnesio/química , Silicatos/análisis , Silicatos/química , Agua/química
12.
Science ; 343(6169): 1245267, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324276

RESUMEN

H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre/química , Hidrocarburos Clorados/análisis , Marte , Compuestos Orgánicos Volátiles/análisis , Bahías , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Oxígeno/análisis , Oxígeno/química , Sulfuros/análisis , Sulfuros/química , Agua/análisis , Agua/química
13.
Science ; 341(6153): 1238937, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24072926

RESUMEN

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

14.
Science ; 340(6136): 1068-72, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23723230

RESUMEN

Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

15.
Geobiology ; 9(5): 394-410, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21884362

RESUMEN

Many Antarctic lakes provide habitat for extensive microbial mats that respond on various timescales to environmental change. Lake Joyce contains calcifying microbialites and provides a natural laboratory to constrain how environmental changes influence microbialite development. In Lake Joyce, depth-specific distributions of calcitic microbialites, organic carbon, photosynthetic pigments and photosynthetic potential cannot be explained by current growth conditions, but are a legacy of a 7-m lake level rise between 1973 and 2009. In the well-illuminated margins of the lake, photosynthetically active benthic communities colonised surfaces submerged for just a few years. However, observed increases in accumulated organic material with depth from 5 to 20 m (2-40 mg ash-free dry weight cm(-2)) and the presence of decimetre-scale calcite microbialites at 20-22 m depth, apparently related to in situ photosynthetic growth, are inconsistent with the current distributions of irradiance, photosynthetic pigments and mat photosynthetic potential (as revealed by pulse-amplitude-modulated fluorometry). The microbialites appeared photosynthetically active in 1986 and 1997, but were outside the depth zone where significant phototrophic growth was possible and were weakly photosynthetically competent in 2009. These complex microbial structures have persisted after growth has ceased, demonstrating how fluctuating environmental conditions and the hysteresis between environmental change, biological response and microbialite development can be important factors to consider when interpreting modern, and by inference ancient, microbially mediated structures.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación , Diatomeas/aislamiento & purificación , Ecosistema , Sedimentos Geológicos/microbiología , Cubierta de Hielo/microbiología , Lagos/microbiología , Regiones Antárticas , Organismos Acuáticos/clasificación , Cianobacterias/crecimiento & desarrollo , Ambiente , Fotosíntesis , Energía Solar
16.
Geobiology ; 9(3): 280-93, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21504538

RESUMEN

Lake Untersee is one of the largest (11.4 km(2)) and deepest (>160 m) freshwater lakes in East Antarctica. Located at 71°S the lake has a perennial ice cover, a water column that, with the exception of a small anoxic basin in the southwest of the lake, is well mixed, supersaturated with dissolved oxygen, alkaline (pH 10.4) and exceedingly clear. The floor of the lake is covered with photosynthetic microbial mats to depths of at least 100 m. These mats are primarily composed of filamentous cyanophytes and form two distinct macroscopic structures, one of which--cm-scale cuspate pinnacles dominated by Leptolyngbya spp.--is common in Antarctica, but the second--laminated, conical stromatolites that rise up to 0.5 m above the lake floor, dominated by Phormidium spp.--has not previously been reported in any modern environment. The laminae that form the conical stromatolites are 0.2-0.8 mm in thickness consisting of fine clays and organic material; carbon dating implies that laminations may occur on near decadal timescales. The uniformly steep sides (59.6 ± 2.5°) and the regular laminar structure of the cones suggest that they may provide a modern analog for growth of some of the oldest well-described Archean stromatolites. Mechanisms underlying the formation of these stromatolites are as yet unclear, but their growth is distinct from that of the cuspate pinnacles. The sympatric occurrence of pinnacles and cones related to microbial communities with distinct cyanobacterial compositions suggest that specific microbial behaviors underpin the morphological differences in the structures.


Asunto(s)
Cianobacterias , Ecosistema , Sedimentos Geológicos , Regiones Antárticas , Carbono/química , Modelos Químicos , Fotosíntesis , Datación Radiométrica , Agua/química
17.
Geobiology ; 8(3): 179-90, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20345889

RESUMEN

The roles of biology in the morphogenesis of microbial mats and stromatolites remain enigmatic due to the vast array of physical and chemical influences on morphology. However, certain microbial behaviors produce complex morphological features that can be directly attributed to motility patterns. Specifically, laboratory experiments with a strain of the cyanobacteria Pseudanabaena demonstrate that distinctive morphologies arise from the undirected gliding and colliding of filaments. When filamentous cells collide, they align and clump, producing intersecting ridges surrounding areas with low cell density, i.e. reticulate structures. Cell motility is essential for the development of reticulates and associated structures: filaments organize into reticulates faster than cell division and growth, and conditions that inhibit motility also inhibit reticulate formation. Cell density of the inoculum affects the frequency of cell-cell collisions, and thus the time required for biofilm organization into reticulate structures. This also affects the specific geometry of the reticulates. These patterns are propagated into larger structures as cyanobacterial cell numbers increase and cells remain motile. Thus, cell motility is important for templating and maintaining the morphology of these microbial communities, demonstrating a direct link between a microbial behavior and a community morphology. Reticulate geometries have been identified in natural microbial mats as well as in the fossil record, and these structures can be attributed to the motility of filamentous bacteria.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Cianobacterias/fisiología , Locomoción
18.
Geobiology ; 6(1): 83-93, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18380888

RESUMEN

The approximately 2.63 Ga Carawine Dolomite, Hamersley Basin, Western Australia, preserves tube structures of probable microbial origin that formed in a low energy environment. The tubes are 0.4-1.8 cm in diameter and at least 10-16 cm long in outcrop. The tubes are defined by dark, 45-microm-thick dolomicritic walls, whereas the tube fill and host rock are composed of 30 microm, cloudy dolomite crystals and rare 170- to 425-microm-wide, dark well-sorted clasts. Closely spaced, rarely discontinuous laminae coat the insides of tubes; less closely spaced, peaked, discontinuous laminae coat the outsides of tubes. The laminae on the outsides of tubes are often intercalated with mammilate structures. The presence of probable microbial coatings on both the insides and the outsides of the tube walls requires that the tubes formed above the sediment-water interface. These tube structures probably formed during gas-charged fluid escape, similar to tubes observed in ancient and modern hydrocarbon seeps and cylindrical water transfer structures in sandstones. The laminae that coat the tubes have very similar geometries to modern biofilms that form in both turbulent and laminar flow, and their geometries probably reflect flow conditions during the fluid escape. The identification of these structures suggests that the preserved interaction between fluid escape and microbial growth in carbonates may be more common than previously thought.


Asunto(s)
Carbonato de Calcio/química , Carbonatos/química , Sedimentos Geológicos/microbiología , Magnesio/química , Sedimentos Geológicos/química , Modelos Teóricos , Australia Occidental
19.
Astrobiology ; 1(1): 57-70, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-12448995

RESUMEN

Analysis of the carbon isotopic composition of carbonates is a valuable tool for studying microbial processes and looking for evidence of life. Microbial fixation of CO2 and conversion of organic carbon to CO2 can produce measurable delta 13C shifts in a microbial mat environment. Diffusion modeling demonstrates that substantial isotopic shifts can develop within the mat and in the diffusion boundary layer in the fluid when CO2 fixation is rapid and prolonged for several hours. Carbonates that precipitate during rapid CO2 fixation can preserve these microbially produced isotopic shifts. However, continued precipitation during intervals when respiration dominates or after the cessation of active microbial growth commonly dilutes autotrophic isotopic signatures. Thus, preserved isotopic signatures rarely reflect the magnitude of isotopic shifts within the mat. Interpretation of observed isotopic shifts in microbial mat carbonate depends on fully characterizing ambient delta 13C and eliminating other origins for isotopic shifts. The carbon isotopic composition of reservoirs can vary substantially, both on Earth and on other planets. Characterizing the reservoir composition and any changes through time is critical to evaluating microbially induced shifts. In addition, careful evaluation of non-microbial causes for shifts in isotopic composition is essential for a reliable interpretation. Complicating processes include recrystallization, calcite precipitation over extended periods of time, variable precipitation rates and water chemistry, and mixing of carbonates having different isotopic signatures.


Asunto(s)
Dióxido de Carbono , Carbonatos , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Exobiología/métodos , Cinética , Vida , Termodinámica
20.
Geology ; 24(2): 119-22, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11539494

RESUMEN

Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.


Asunto(s)
Carbonato de Calcio/química , Sedimentos Geológicos/análisis , Oxígeno/química , Paleontología , Agua de Mar/química , Carbonato de Calcio/análisis , Precipitación Química , Sedimentos Geológicos/química , Hierro/análisis , Hierro/química , Manganeso/análisis , Manganeso/química , Oxígeno/análisis , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...