Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
One Health ; 18: 100755, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770400

RESUMEN

Funding and financing for One Health initiatives at country level remain challenging as investments commonly require demonstrated evidence of economic value or returns. The objectives of this review were to i) identify, critically analyse and summarise quantitative evidence of the net economic value of One Health initiatives; ii) document methodologies commonly used in the scientific literature; and iii) describe common challenges and any evidence gaps. Scientific databases were searched for published literature following the PRISMA guidelines and an online survey and workshop with subject matter experts were used to identify relevant grey literature. Studies were included if they reported on quantitative costs and benefits (monetary and non-monetary) and were measured across at least two sectors. Relevant publications were analysed and plotted against the six action tracks of the Quadripartite One Health Joint Plan of Action to help classify the initiatives. Ninety-seven studies were included. Eighty studies involved only two sectors and 78 reported a positive economic value or return. Of those studies that reported a positive return, 49 did not compare with a sectoral counterfactual, 28 studies demonstrated an added value of using a cross-sectoral approach, and 6 studies demonstrated an added value of One Health communication, collaboration, coordination, and capacity building. Included studies most frequently related to endemic zoonotic, neglected tropical and vector-borne diseases, followed by health of the environment and food safety. However, diversity in economic analysis methodology between studies included resulted in difficulty to compare or combine findings. While there is a growing body of evidence of the value of One Health initiatives, a substantial part of the evidence still focuses on "traditional" One Health topics, particularly zoonoses. Developing a standardised and practical approach for One Health economic evaluation will facilitate assessment of the added value and gather evidence for One Health to be invested in and endorsed by multiple sectors.

2.
BMC Vet Res ; 19(1): 228, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919680

RESUMEN

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in humans in 2012. Since then, 2605 cases and 937 associated deaths have been reported globally. Camels are the natural host for MERS-CoV and camel to human transmission has been documented. The relationship between MERS-CoV shedding and presence of neutralizing antibodies in camels is critical to inform surveillance and control, including future deployment of camel vaccines. However, it remains poorly understood. The longitudinal study conducted in a closed camel herd in Egypt between December 2019 and March 2020 helped to characterize the kinetics of MERS-CoV neutralizing antibodies and its relation with viral shedding. RESULTS: During the 100-day longitudinal study, 27 out of 54 camels (50%) consistently tested negative for presence of antibodies against MERS-CoV, 19 (35.2%) tested positive and 8 (14.8%) had both, positive and negative test results. Fourteen events that could be interpreted as serological indication of probable infection (two seroconversions and twelve instances of positive camels more than doubling their optical density ratio (OD ratio) in consecutive samples) were identified. Observed times between the identified events provided strong evidence (p = 0.002) against the null hypothesis that they occurred with constant rate during the study, as opposed to clustering at certain points in time. A generalized additive model showed that optical density ratio (OD ratio) is positively associated with being an adult and varies across individual camels and days, peaking at around days 20 and 90 of the study. Despite serological indication of probable virus circulation and intense repeated sampling, none of the tested nasal swab samples were positive for MERS-CoV RNA, suggesting that, if the identified serological responses are the result of virus circulation, the virus may be present in nasal tissue of infected camels during a very narrow time window. CONCLUSIONS: Longitudinal testing of a closed camel herd with past history of MERS-CoV infection is compatible with the virus continuing to circulate in the herd despite lack of contact with other camels. It is likely that episodes of MERS-CoV infection in camels can take place with minimal presence of the virus in their nasal tissues, which has important implications for future surveillance and control of MERS-CoV in camel herds and prevention of its zoonotic transmission.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Camelus , Estudios Longitudinales , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Anticuerpos Neutralizantes
3.
Emerg Microbes Infect ; 12(1): 2220577, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37306181

RESUMEN

SARS-CoV-2 has demonstrated the ability to infect a wide range of animal species. Here, we investigated SARS-CoV-2 infection in livestock species in Oman and provided serological evidence of SARS-CoV-2 infection in cattle, sheep, goats, and dromedary camel using the surrogate virus neutralization and plaque reduction neutralization tests. To better understand the extent of SARS-CoV-2 infection in animals and associated risks, "One Health" epidemiological investigations targeting animals exposed to COVID-19 human cases should be implemented with integrated data analysis of the epidemiologically linked human and animal cases.


Asunto(s)
COVID-19 , Bovinos , Humanos , Animales , Ovinos , COVID-19/epidemiología , COVID-19/veterinaria , Omán/epidemiología , Camelus , SARS-CoV-2 , Análisis de Datos , Cabras
4.
Front Vet Sci ; 10: 1143375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089403

RESUMEN

A workforce with the adequate field epidemiology knowledge, skills and abilities is the foundation of a strong and effective animal health system. Field epidemiology training is conducted in several countries to meet the increased global demand for such a workforce. However, core competencies for field veterinary epidemiology have not been identified and agreed upon globally, leading to the development of different training curricula. Having a set of agreed core competencies can harmonize field veterinary epidemiology training. The Food and Agriculture Organization of the United Nations (FAO) initiated a collective, iterative, and participative process to achieve this and organized two expert consultative workshops in 2018 to develop core competencies for field veterinary epidemiology at the frontline and intermediate levels. Based on these expert discussions, 13 competencies were identified for the frontline and intermediate levels. These competencies were organized into three domains: epidemiological surveillance and studies; field investigation, preparedness and response; and One Health, communication, ethics and professionalism. These competencies can be used to facilitate the development of field epidemiology training curricula for veterinarians, adapted to country training needs, or customized for training other close disciplines. The competencies can also be useful for mentors and employers to monitor and evaluate the progress of their mentees, or to guide the selection process during the recruitment of new staff.

5.
Prev Vet Med ; 212: 105842, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706557

RESUMEN

Many small ruminants infected with foot-and-mouth disease (FMD) remain asymptomatic, with the capacity to promote silent viral spread within domestic and wildlife species. However, little is known about the epidemiological role played by small ruminants in FMD. In particular, there are few studies that examine FMD seroprevalence, spatial patterns and risk factors for exposure in small ruminants. A cross-sectional study was conducted in northern Nigeria (Bauchi, Kaduna, and Plateau States) to determine the true seroprevalence of FMD in backyard small ruminants, identify factors associated with FMD seroconversion at animal and household levels, and identify spatial patterns for FMD virus exposure. Data on animal (n = 1800) and household (n = 300) characteristics were collected using a standardised questionnaire. Sera samples from 1800 small ruminants were tested for antibodies against non-structural proteins of FMD virus. True seroprevalence was estimated stochastically to account for variability and uncertainty in the test sensitivity and specificity previously reported. Risk factors for FMD seropositivity were identified at animal and household levels and spatial patterns were determined. The overall true seroprevalence for FMD virus, in the small ruminant population tested, was estimated to be 10.2 % (95 % Credible Interval (CrI) 0.0-19.0), while State-level estimates were 17.3 % (95 % CrI 0.0-25.8) for Kaduna, 6.9 % (95% CrI 0.0-15.8) for Bauchi, and 3.6 % (95 % CrI 0.0-12.6) for Plateau. State and species were the main risk factors identified at animal level, with interaction detected between them. Compared to goats in Plateau, the odds of testing positive were higher for goats in Bauchi (Odds Ratio (OR)= 1.83, 95 % CI 1.13-2.97, p = 0.01) and Kaduna (OR=2.97, 95 % CI 1.89-4.67, p < 0.001), as well as for sheep in Plateau (OR=3.78, 95 % CI 2.08-6.87, p < 0.001), Bauchi (OR=1.61, 95 % CI 0.91-2.84, p = 0.10), and Kaduna (OR=3.11, 95 % CI 1.61-6.01, p = 0.001). Households located in Kaduna were more likely to have a higher number of seropositive SR compared to those in Plateau (Prevalence Ratio (PR)= 1.75, 95 % CI 1.30-2.36, p < 0.001), and households keeping sheep flocks were more likely to be seropositive (from 1 to 10 sheep: PR=1.39, 95 % CI 1.05-1.82, p = 0.02; more than 10 sheep: PR=1.55, 95 % CI 1.12-2.15, p = 0.008) compared to those that did not keep sheep. A hot-spot was detected in Kaduna, and a cold-spot in Plateau. These results reveal that small ruminants had been recently exposed to FMD virus with spatial heterogeneity across the study area.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Enfermedades de las Cabras , Enfermedades de las Ovejas , Ovinos , Animales , Fiebre Aftosa/epidemiología , Estudios Seroepidemiológicos , Nigeria/epidemiología , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de las Cabras/epidemiología , Rumiantes , Cabras , Factores de Riesgo
6.
Transbound Emerg Dis ; 69(5): 3041-3046, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34331827

RESUMEN

Livestock markets are considered vital parts of the agricultural economy, particularly in developing countries where livestock keeping contributes to both food security and economic stability. Animals from diverse sources are moved to markets, they mix while they are there and are subsequently redistributed over wide geographic areas. Consequently, markets provide an opportunity for targeted surveillance for circulating pathogens. This study investigated the use of environmental sampling at a live goat market in Nepal for the detection of foot-and-mouth disease virus (FMDV) and peste des petits ruminants virus (PPRV), both of which are endemic. Five visits to the market were carried out between November 2016 and April 2018, with FMDV RNA detected on four visits and PPRV RNA detected on all five visits. Overall, 4.1% of samples (nine out of 217) were positive for FMDV RNA and 60.8% (132 out of 217) were positive for PPRV RNA, though the proportion of positive samples varied amongst visits. These results demonstrate that non-invasive, environmental sampling methods have the potential to be used to detect circulation of high priority livestock diseases at a live animal market and, hence, to contribute to their surveillance and control.


Asunto(s)
Virus de la Fiebre Aftosa , Enfermedades de las Cabras , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Virus de la Fiebre Aftosa/genética , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Cabras/epidemiología , Cabras , Nepal/epidemiología , Peste de los Pequeños Rumiantes/diagnóstico , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/genética , ARN Viral/genética
7.
Front Vet Sci ; 9: 1057040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36825205

RESUMEN

The first Food and Agriculture Organization of the United Nations (FAO) Action Plan on antimicrobial resistance (AMR), published in 2016, identified the need to develop capacity for AMR surveillance and monitoring in food and agriculture sectors. As part of this effort, FAO has developed the "Assessment Tool for Laboratories and AMR Surveillance Systems" (FAO-ATLASS) to assist countries in systematically assessing their AMR surveillance system in food and agriculture. FAO-ATLASS includes two different modules for surveillance and laboratory assessment. Each module includes two questionnaires that collect either qualitative or semi-quantitative data to describe and score the performance of national AMR surveillance system data production network, data collection and analysis, governance, communication and overall sustainability in a standardized manner. Based on information captured in the questionnaire by trained assessors (1) tables and figures describing the outputs of the surveillance system are automatically generated (2) a Progressive Improvement Pathway (PIP) stage, ranging from "1-limited" to "5-sustainable", is assigned to each laboratory assessed in the country, each area of the surveillance system and also to the overarching national AMR surveillance system. FAO-ATLASS allows national authorities to implement a strategic stepwise approach to improving their AMR surveillance systems via the FAO-ATLASS PIP system and provides an evidence base for actions and advocacy. The implementation of FAO-ATLASS at regional and global levels can contribute to harmonize and better coordinate strategies aimed at implementing an integrated AMR surveillance system under the One Health approach.

8.
Transbound Emerg Dis ; 69(4): 1963-1982, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34169659

RESUMEN

Epidemiological models of notifiable livestock disease are typically framed at a national level and targeted for specific diseases. There are inherent difficulties in extending models beyond national borders as details of the livestock population, production systems and marketing systems of neighbouring countries are not always readily available. It can also be a challenge to capture heterogeneities in production systems, control policies, and response resourcing across multiple countries, in a single transboundary model. In this paper, we describe EuFMDiS, a continental-scale modelling framework for transboundary animal disease, specifically designed to support emergency animal disease planning in Europe. EuFMDiS simulates the spread of livestock disease within and between countries and allows control policies to be enacted and resourced on a per-country basis. It provides a sophisticated decision support tool that can be used to look at the risk of disease introduction, establishment and spread; control approaches in terms of effectiveness and costs; resource management; and post-outbreak management issues.


Asunto(s)
Enfermedades de los Animales , Fiebre Aftosa , Enfermedades de los Animales/epidemiología , Animales , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Fiebre Aftosa/epidemiología , Ganado
9.
Front Vet Sci ; 9: 1029075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590816

RESUMEN

Antigen banks have been established to supply foot-and-mouth disease virus (FMDV) vaccines at short notice to respond to incursions or upsurges in cases of FMDV infection. Multiple vaccine strains are needed to protect against specific FMDV lineages that circulate within six viral serotypes that are unevenly distributed across the world. The optimal selection of distinct antigens held in a bank must carefully balance the desire to cover these risks with the costs of purchasing and maintaining vaccine antigens. PRAGMATIST is a semi-quantitative FMD vaccine strain selection tool combining three strands of evidence: (1) estimates of the risk of incursion from specific areas (source area score); (2) estimates of the relative prevalence of FMD viral lineages in each specific area (lineage distribution score); and (3) effectiveness of each vaccine against specific FMDV lineages based on laboratory vaccine matching tests (vaccine coverage score). The output is a vaccine score, which identifies vaccine strains that best address the threats, and consequently which are the highest priority for inclusion in vaccine antigen banks. In this paper, data used to populate PRAGMATIST are described, including the results from expert elicitations regarding FMD risk and viral lineage circulation, while vaccine coverage data is provided from vaccine matching tests performed at the WRLFMD between 2011 and 2021 (n = 2,150). These data were tailored to working examples for three hypothetical vaccine antigen bank perspectives (Europe, North America, and Australia). The results highlight the variation in the vaccine antigens required for storage in these different regions, dependent on risk. While the tool outputs are largely robust to uncertainty in the input parameters, variation in vaccine coverage score had the most noticeable impact on the estimated risk covered by each vaccine, particularly for vaccines that provide substantial risk coverage across several lineages.

10.
One Health Outlook ; 3(1): 14, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34275496

RESUMEN

Attacks using animal pathogens can have devastating socioeconomic, public health and national security consequences. The livestock sector has some inherent vulnerabilities which put it at risk to the deliberate or accidental spread of disease. The growing concern of countries about the risks of agro-terrorism and agro-crime has led to efforts to prepare against potential attacks. One recent international effort is the launch of a joint OIE, FAO and INTERPOL project in 2019 to build resilience against agro-terrorism and agro-crime targeting animal health with the financial support of the Weapons Threat Reduction Programme of Global Affairs Canada. Given the importance of strong animal health surveillance systems for the early and effective response to agro-terrorism and agro-crime, the project will use the FAO Surveillance Evaluation Tool (SET) and its new Biothreat Detection Module to evaluate beneficiary countries' capacities to detect criminal or terrorist animal health events. This paper presents the development of the new SET Biothreat Detection Module and how it will be used to evaluate surveillance for agro-terrorism and agro-crime animal disease threats. The module will be piloted in early 2021 and, once finalized, will be used by beneficiary countries of the joint OIE-FAO-INTERPOL project. Results from evaluations using SET and its Biothreat Detection Module are expected to provide a baseline from which countries can build targeted capacity for animal disease surveillance including early detection and investigation of potential terrorist or criminal events involving zoonotic and non-zoonotic animal pathogens.

12.
BMC Vet Res ; 17(1): 63, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526020

RESUMEN

BACKGROUND: Foot-and-mouth disease (FMD) is a highly infectious viral disease, recognised to affect animals in the order Artiodactyla. The disease is rarely fatal in adult animals, however high mortality is associated with neonatal and juvenile infection. CASE PRESENTATION: Five puppies died after being fed lamb carcases, the lambs having died during an outbreak of FMD in Iran. Following a post-mortem examination, cardiac tissue from one of the dead puppies was subjected to virus isolation, antigen ELISA, real-time RT-PCR, sequencing and confocal microscopy to assess the presence and characteristics of any FMD virus. The virological and microscopic examination of the cardiac tissue provided evidence of FMD virus replication in the canine heart. CONCLUSIONS: The data generated in this study demonstrate for the first time that FMD virus can internalise and replicate in dogs and may represent an epidemiologically significant event in FMD transmission, highlighting the dangers of feeding diseased animal carcases to other species. The reporting of this finding may also focus attention on similar disease presentations in dogs in FMD endemic countries allowing a better understanding of the prevalence of such events.


Asunto(s)
Enfermedades de los Perros/virología , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/virología , Animales , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/transmisión , Perros , Fiebre Aftosa/epidemiología , Fiebre Aftosa/transmisión , Corazón/virología , Irán/epidemiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/virología , Carne Roja/virología , Ovinos , Replicación Viral
13.
Virus Evol ; 7(1): veab009, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35186323

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious animal disease caused by an RNA virus subdivided into seven serotypes that are unevenly distributed in Asia, Africa, and South America. Despite the challenges of controlling FMD, since 1996 there have been only two outbreaks attributed to serotype C, in Brazil and in Kenya, in 2004. This article describes the historical distribution and origins of serotype C and its disappearance. The serotype was first described in Europe in the 1920s, where it mainly affected pigs and cattle but as a less common cause of outbreaks than serotypes O and A. No serotype C outbreaks have been reported in Europe since vaccination stopped in 1990. FMD virus is presumed to have been introduced into South America from Europe in the nineteenth century, although whether serotype C evolved there or in Europe is not known. As in Europe, this serotype was less widely distributed and caused fewer outbreaks than serotypes O and A. Since 1994, serotype C had not been reported from South America until four small outbreaks were detected in the Amazon region in 2004. Elsewhere, serotype C was introduced to Asia, in the 1950s to the 1970s, persisting and evolving for several decades in the Indian subcontinent and for eighteen years in the Philippines. Serotype C virus also circulated in East Africa between 1957 and 2004. Many serotype C viruses from European and Kenyan outbreaks were closely related to vaccine strains, including the most recently recovered Kenyan isolate from 2004. International surveillance has not confirmed any serotype C cases, worldwide, for over 15 years, despite more than 2,000 clinical submissions per year to reference laboratories. Serology provides limited evidence for absence of this serotype, as unequivocal interpretation is hampered by incomplete intra-serotype specificity of immunoassays and the continued use of this serotype in vaccines. It is recommended to continue strengthening surveillance in regions of FMD endemicity, to stop vaccination against serotype C and to reduce working with the virus in laboratories, since inadvertent escape of virus during such activities is now the biggest risk for its reappearance in the field.

14.
Proc Biol Sci ; 287(1938): 20200906, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33143581

RESUMEN

Foot-and-mouth disease (FMD) is an extremely infectious viral infection of cloven-hoofed animals which is highly challenging to control and can give rise to national animal health crises, especially if there is a lack of pre-existing immunity due to the emergence of new strains or following incursions into disease-free regions. The 2001 FMD epidemic in the UK was on a scale that initially overwhelmed the national veterinary services and was eventually controlled by livestock lockdown and slaughter on an unprecedented scale. In 2020, the rapid emergence of COVID-19 has led to a human pandemic unparalleled in living memory. The enormous logistics of multi-agency control efforts for COVID-19 are reminiscent of the 2001 FMD epidemic in the UK, as are the use of movement restrictions, not normally a feature of human disease control. The UK experience is internationally relevant as few countries have experienced national epidemic crises for both diseases. In this review, we reflect on the experiences and lessons learnt from UK and international responses to FMD and COVID-19 with respect to their management, including the challenge of preclinical viral transmission, threat awareness, early detection, different interpretations of scientific information, lockdown, biosecurity behaviour change, shortage of testing capacity and the choices for eradication versus living with infection. A major lesson is that the similarity of issues and critical resources needed to manage large-scale outbreaks demonstrates that there is benefit to a 'One Health' approach to preparedness, with potential for greater cooperation in planning and the consideration of shared critical resources.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Fiebre Aftosa/epidemiología , Neumonía Viral/epidemiología , Animales , Betacoronavirus , COVID-19 , Fiebre Aftosa/prevención & control , Humanos , Pandemias , SARS-CoV-2 , Reino Unido/epidemiología
15.
Transbound Emerg Dis ; 66(3): 1268-1279, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30734513

RESUMEN

Disease reporting is an essential frontline component of surveillance systems, particularly for detecting incursions of new and emerging diseases. It has the advantages of being comprehensive and continuous, with the potential to reduce the time of disease detection and the extent of consequent spread. A number of exotic diseases, including sheep and goat pox, lumpy skin disease, peste des petits ruminants and foot and mouth disease have historically entered into south-eastern Europe through the Thrace region, which extends across neighbouring areas of Greece, Bulgaria and Turkey. In this high-risk area, multiple factors can reduce the sensitivity of disease reporting across the diverse production systems and animal health services need robust and effective disease reporting systems. While describing a training exercise designed to provide animal health services of the three countries with the knowledge and skills for conducting comprehensive in-country assessments, we provide an initial evaluation of the sensitivity of foot and mouth disease reporting and identify gaps and constraints in the Thrace region. An expert elicitation approach was used to consult official veterinarians from central and local animal health authorities of the three countries, and scenario trees modelling was applied to analyse the collected data. The reported sensitivity of disease reporting often varied between the central and local veterinary authorities within the three countries. Awareness of clinical disease, of reporting procedures and of biosecurity measures affected the early stages of disease reporting, particularly in the production systems identified at lower reporting sensitivity such as small ruminant's herds, mixed bovine herds and backyard herds. Despite its limitations this training exercise provided an effective framework (a) to develop capacities of the veterinary services in the region and (b) to supply initial evidence for guiding further interventions targeting those sectors and stakeholders at lower reporting sensitivity to reduce risks of disease introduction.


Asunto(s)
Notificación de Enfermedades/métodos , Fiebre Aftosa/epidemiología , Ganado , Animales , Bulgaria/epidemiología , Grecia/epidemiología , Vigilancia de la Población , Turquía/epidemiología , Medicina Veterinaria
16.
Vaccine ; 37(8): 1007-1015, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30685245

RESUMEN

Vaccines are commonly used to control Foot-and-Mouth Disease (FMD) in endemic regions and form an important part of contingency plans for FMD-free countries. Conventional FMD vaccines have numerous limitations, and the U.S. government supports the development of next-generation vaccines. In the U.S., vaccine efficacy is typically demonstrated through experimental vaccination and challenge of animals using the World Organization for Animal Health (OIE) standards. Although conventional challenge and immunogenicity studies provide useful information, they have limitations and results do not always accurately predict field performance. Consequently, there is a need to test next-generation vaccines under field conditions to gain a better understanding of field performance to inform policy decisions and support their viability as a commercial product. In June 2017, an expert consultation was organised to discuss and define an optimal field study design for novel FMD vaccines. Cattle were the primary species considered, although parallel strategies for swine and small ruminants were also discussed. Many methodological and logistical considerations in the study design were identified, including: (1) study site selection and the importance of baseline studies to understand exposure risk, (2) ethics of using a placebo and assessing equivalence with conventional vaccines, (3) merits of using individual randomised versus cluster randomised trials, (4) preventive versus reactive vaccination, and (5) methods of randomisation and blinding. The proposed optimal study design was a multicentre (i.e. farm), three-arm, double-blind randomised controlled trial comparing groups receiving the novel vaccine to a conventional vaccine group and a placebo group. Large farms in areas of high exposure risk were identified as ideal study sites, and the primary study outcome was susceptibility to disease or infection, during a six-month observation period, following a single dose of vaccine. This report provides a summary of the important issues to consider when designing a field efficacy study in livestock and proposes a study design that could be utilised for novel FMD vaccines.


Asunto(s)
Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Ganado/inmunología , Animales , Anticuerpos Antivirales/inmunología , Brotes de Enfermedades/prevención & control , Método Doble Ciego , Granjas , Virus de la Fiebre Aftosa/inmunología , Vacunación/métodos , Vacunas Virales/inmunología
17.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29959244

RESUMEN

Environmental sampling enables disease surveillance beyond regular investigation of observed clinical cases, extending data on the circulation of a pathogen in a specific area. Developing straightforward, low-technology methods suitable for use under field conditions is key to the inclusion of such approaches alongside traditional surveillance techniques. Foot-and-mouth disease virus (FMDV) is an economically important livestock pathogen, affecting cloven-hoofed livestock in many countries. Countries with FMDV face severe trade restrictions, and infections can have long-term effects on the productivity of affected animals. Environmental contamination by the virus in excretions and secretions from infected individuals promotes transmission but also presents an opportunity for noninvasive sample collection, facilitating diagnostic and surveillance activities. We present environmental sampling methods that have been tested in the Kathmandu Valley, Nepal, where FMDV is endemic. A total of nine sites were visited and sampled between November 2016 and November 2017. Environmental swabs collected from sites with reported outbreaks of FMD were used to demonstrate successful detection of FMDV RNA from the environment. The development of methods that can reliably detect FMDV RNA in the environment is significant, since this possibility extends the toolbox available for surveillance for this disease. Similar methods have already been deployed in the effort to eradicate polio, and with FMDV, such methods could easily be deployed in the event of an outbreak to provide additional resources for detection that would relieve pressure on veterinary services. The development of low-technology, straightforward surveillance methods such as these can support a robust response to outbreaks.IMPORTANCE Prompt confirmation and diagnosis of disease are key factors in controlling outbreaks. The development of sampling techniques to detect FMDV RNA from the environment will extend the tool kit available for the surveillance of this pathogen. The methods presented in this article broaden surveillance opportunities using accessible techniques. Pairing these methods with existing and novel diagnostic tests will improve the capability for rapid detection of outbreaks and implementation of timely interventions to control outbreaks. In areas of endemicity, these methods can be implemented to extend surveillance beyond the investigation of clinical cases, providing additional data for the assessment of virus circulation in specific areas.


Asunto(s)
Enfermedades de los Bovinos/virología , Brotes de Enfermedades/veterinaria , Monitoreo del Ambiente/métodos , Virus de la Fiebre Aftosa/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Brotes de Enfermedades/prevención & control , Enfermedades Endémicas/prevención & control , Enfermedades Endémicas/veterinaria , Monitoreo Epidemiológico , Femenino , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/genética , Ganado/virología , Nepal/epidemiología , ARN Viral/aislamiento & purificación , Muestreo , Manejo de Especímenes
18.
Open Vet J ; 7(1): 1-11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28180094

RESUMEN

Sporadic outbreaks of foot-and-mouth disease (FMD) have occurred in Libya for almost fifty years. During the spring of 2013, a countrywide serosurvey was undertaken to assess the level of FMD virus circulation and identify FMD virus serotypes in the country. A total of 4221 sera were collected, comprising samples from large ruminants (LR; n=1428 samples from 357 farms) and small ruminants (SR; n=2793 samples from 141 farms). FMD sero-prevalence of NSP antibodies determined by ELISA were 19.0% (271/1428) with 95% CI (16.9 - 21.0) and 13.5% (378/2793) with 95% CI (12.3 - 14.8) for LR and SR samples, respectively. The sero-prevalence of NSP antibodies in LR was 12.3% and 19.8% for age group < 1 year and ≥ 1 year, respectively (X2= 4.95, P= 0.026), while in SR was 3.7%, 13.6% and 21.3% for age group < 1 year, 1-2 year and > 2 year, respectively (X2= 118.1, P= 0.000). These observed NSP serologic profiles support the hypothesis of an endemic level of FMD circulation in Libya. All positive sera were tested for SP antibodies for O, A and SAT-2 FMD virus serotypes. Serotype O was the dominant circulating serotype followed by serotype A, while evidence of SAT-2 was not found. These data provide an insight into the wider epidemiology of FMD in Libya, and contribute to field and laboratory investigations that during 2013 serotype O (O/ME-SA/Ind-2001 lineage) was isolated from clinical samples collected from the country.

19.
Vet Res ; 46: 77, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26156024

RESUMEN

The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems.


Asunto(s)
Búfalos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/epidemiología , África Central/epidemiología , África Occidental/epidemiología , Animales , Anticuerpos Antivirales/sangre , Fiebre Aftosa/virología , Parques Recreativos , Prevalencia , Estudios Seroepidemiológicos , Serogrupo , Proteínas Virales/análisis
20.
Prev Vet Med ; 120(2): 177-186, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25912977

RESUMEN

The economic impact of foot-and-mouth disease (FMD) has been poorly characterised particularly in endemic settings where such knowledge is important for decision-making on disease control with limited resources. In order to address this, a study was designed using individual animal data from a large-scale dairy farm in Kenya to estimate the impact of an FMD outbreak due to serotype SAT2 virus on milk yield. Daily milk yields from 218 mainly European-breed cattle that were lactating during the 29-day outbreak period were considered in the analysis. At the herd level, the average daily yields decreased from around 20 to 13kg per cow, recovering approximately 2 months after the commencement of the outbreak. Generalised estimating equations (GEE) and an autoregressive correlation matrix were used to compare yields of reported clinical FMD cases and non-cases. No difference was found between reported clinical and non-clinical cases suggesting inaccurate case recording, poor sensitivity of the case definition and subclinical infections being present. To further investigate the impact of FMD, yields were predicted for each individual animal based on historic data from the same herd using a similar GEE approach. For cattle lactating during the outbreak, comparisons were made between actual and predicted yields from the commencement of the outbreak to 305 days lactation using a linear regression model. Animals produced significantly less than predicted if in parity 2 or greater and between 0 and 50 days in milk (DIM) at the start of the outbreak period. The maximum effect was seen among animals in parity ≥4 and between 0 and 50 DIM at the start of the outbreak, producing on average 688.7kg (95%CI 395.5, 981.8) less milk than predicted for their remaining lactation, representing an average 15% reduction in the 305 day production for these animals. Generalisation of the results requires caution as the majority of Kenyan milk is produced in smallholder farms. However, such farms use similar genetics and feeding practices to the study farm, and such systems are increasingly important in the supply of milk globally. These results make an important and unique contribution to the evidence base on FMD impact among dairy cattle in an endemic setting.


Asunto(s)
Enfermedades de los Bovinos/economía , Enfermedades de los Bovinos/epidemiología , Industria Lechera/economía , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/economía , Fiebre Aftosa/epidemiología , Leche/metabolismo , Animales , Bovinos , Enfermedades de los Bovinos/virología , Femenino , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/fisiología , Incidencia , Kenia/epidemiología , Lactancia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...