Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 437(Pt 2): 137918, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37925780

RESUMEN

In this work, phlorotannin extracts (PhTEs) were isolated from Ascophyllum nodosum. The effects of PhTEs on the textural properties, structural changes and oxidation level of Apostichopus japonicus (A. japonicus) were investigated. The results showed that thermal treatment could lead to the dissolution of TCA-soluble peptides and free hydroxyproline and promote the degradation of A. japonicus. The chemical compositional changes and texture profile analysis results indicated that PhTEs could effectively inhibit the degradation of A. japonicus and improve the hardness and chewiness of A. japonicus. Analysis of multiple spectroscopic methods suggested that the secondary and tertiary conformations tended to be stable after PhTEs were added. In addition, electron spin resonance results indicated that PhTEs could reduce the oxidation level of A. japonicus. These results suggest that the degradation of A. japonicus during mild heat treatment can be regulated by PhTEs, which provides insights for quality control in A. japonicus heat treatment.


Asunto(s)
Ascophyllum , Stichopus , Animales , Ascophyllum/química , Oxidación-Reducción
2.
Food Res Int ; 173(Pt 2): 113386, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803725

RESUMEN

Food-grade Pickering emulsions with plant proteins have attracted increasing interest in recent years. In this work, we report a type of phycocyanin (PC) electrostatic nanocomplex fabricated following a complexation between PC and lysozyme (Lys). The aim was to investigate toward investigating the performance of phycocyanin-Lysozyme (PC-Lys) nanocomplexes in stabilizing Pickering emulsions and protecting fucoxanthin (FX) from degradation. The properties of the PC-Lys nanocomplexes were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy and three-phase contact angle. Using PC-Lys nanocomplexes as emulsifiers, Pickering emulsions were successfully prepared. Pickering emulsions stabilized by PC-Lys nanocomplexes generated a tight three-dimensional network structure, which increased the memory modulus and viscoelasticity of the emulsion. Furthermore, the produced Pickering emulsions considerably increased the chemical stability and bioavailability of FX. Overall, our study showed that PC-Lys nanocomplexes have the potential for use in Pickering emulsion construction with enhanced protective effects on loaded lipophilic ingredients.


Asunto(s)
Muramidasa , Ficocianina , Emulsiones/química , Emulsionantes/química
3.
Microorganisms ; 11(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37894133

RESUMEN

The Tibetan Plateau, known as the "Roof of the World" and "The Third Pole", harbors numerous saline lakes primarily distributed in the Northern Tibetan Plateau. However, the challenging conditions of high altitude, low oxygen level, and harsh climate have limited investigations into the actinobacteria from these saline lakes. This study focuses on investigating the biodiversity and bioactive secondary metabolites of cultivable actinobacteria isolated from the sediments of four saline lakes on the Northern Tibetan Plateau. A total of 255 actinobacterial strains affiliated with 21 genera in 12 families of 7 orders were recovered by using the pure culture technique and 16S rRNA gene phylogenetic analysis. To facilitate a high-throughput bioactivity evaluation, 192 isolates underwent OSMAC cultivation in a miniaturized 24-well microbioreactor system (MATRIX cultivation). The antibacterial activity of crude extracts was then evaluated in a 96-well plate antibacterial assay. Forty-six strains demonstrated antagonistic effects against at least one tested pathogen, and their underlying antibacterial mechanisms were further investigated through a dual-fluorescent reporter assay (pDualrep2). Two Streptomyces strains (378 and 549) that produce compounds triggering DNA damage were prioritized for subsequent chemical investigations. Metabolomics profiling involving HPLC-UV/vis, UPLC-QTOF-MS/MS, and molecular networking identified three types of bioactive metabolites belonging to the aromatic polyketide family, i.e., cosmomycin, kidamycin, and hedamycin. In-depth analysis of the metabolomic data unveiled some potentially novel anthracycline compounds. A genome mining study based on the whole-genome sequences of strains 378 and 549 identified gene clusters potentially responsible for cosmomycin and kidamycin biosynthesis. This work highlights the effectiveness of combining metabolomic and genomic approaches to rapidly identify bioactive chemicals within microbial extracts. The saline lakes on the Northern Tibetan Plateau present prospective sources for discovering novel actinobacteria and biologically active compounds.

4.
Front Microbiol ; 14: 1247001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886074

RESUMEN

Introduction: The increase in incidence of multidrug-resistant bacteria and the inadequacy of new antimicrobial drugs have led to a widespread outbreak of bacterial antimicrobial resistance. To discover new antibiotics, biodiversity, and novelty of culturable actinobacteria dwelled in soil of the Western Qinghai-Tibet Plateau were investigated. By integrating antibacterial assay with omics tools, Amycolatopsis sp. A133, a rare actinobacterial strain and its secondary metabolites were further studied. Method: Culture-dependent method was used to obtain actinobacterial strains from two soil samples collected from Ali region in Qinghai-Tibet Plateau. The cultural extractions of representative strains were assayed against "ESKAPE" pathogens by paper-disk diffusion method and the double fluorescent protein reporter "pDualrep2" system. An Amycolatopsis strain coded as A133 was prioritized and its secondary metabolites were further analyzed and annotated by omics tools including antiSMASH and GNPS (Global Natural Social Molecular Networking). The predicted rifamycin analogs produced by Amycolatopsis sp. A133 were isolated and identified by chromatographic separation, such as Sephadex LH-20 and HPLC, and spectral analysis, such as NMR and UPLC-HRESI-MS/MS, respectively. Results: A total of 406 actinobacteria strains affiliated to 36 genera in 17 families of 9 orders were isolated. Out of 152 representative strains, 63 isolates exhibited antagonistic activity against at least one of the tested pathogens. Among them, 7 positive strains were identified by the "pDualrep2" system as either an inhibitor of protein translation or DNA biosynthesis. The cultural broth of Amycolatopsis sp. A133 exhibited a broader antimicrobial activity and can induce expression of TurboRFP. The secondary metabolites produced by strain A133 was annotated as rifamycins and zampanolides by antiSMASH and GNPS analysis. Five members of rifamycins, including rifamycin W, protorifamycin I, rifamycin W-M1, proansamycin B, and rifamycin S, were purified and identified. Rifamycin W-M1, was found as a new member of the naturally occurring rifamycin group of antibiotics. Discussion: Assisted by omics tools, the successful and highly efficient discovery of rifamycins, a group of clinically used antibiotics from actinobacteria in Ali area encouraged us to devote more energy to explore new antibiotics from the soils on the Western Tibetan Plateau.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37227258

RESUMEN

A Gram-stain-positive, aerobic, non-motile, non-spore-forming and rod-shaped actinobacterium, designated strain 10Sc9-8T, was isolated from Taklamakan desert soil sampled in the Xinjiang Uygur Autonomous Region, China. Strain 10Sc9-8T grew at 8‒37 °C (optimum, 28‒30 °C), pH 6.0‒10.0 (optimum, pH 7.0-8.0) and in the presence of 0‒15 % (w/v) NaCl (optimum, 0-3 %). Phylogenetic analysis based on 16S rRNA gene sequence suggested that strain 10Sc9-8T was affiliated with members of the genus Georgenia and showed the highest 16S rRNA gene sequence similarity to Georgenia yuyongxinii Z443T (97.4 %). Phylogenomic analysis based on the whole genome sequences indicated that strain 10Sc9-8T should be assigned into the genus Georgenia. The average nucleotide identity and digital DNA-DNA hybridization values calculated from the whole genome sequences indicated that strain 10Sc9-8T was clearly separated from other closely related species of the genus Georgenia with values below the thresholds for species delineation. Chemotaxonomic analyses showed that the cell-wall peptidoglycan was in a variant of A4α type with an interpeptide bridge comprising l-Lys-l-Ala-Gly-l-Asp. The predominant menaquinone was MK-8(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, several unidentified phospholipids, glycolipids and one unidentified lipid. The major fatty acids were anteiso-C15 : 0, anteiso-C15 : 1 A and C16 : 0. The genomic DNA G+C content was 72.7 mol%. On the basis of phenotypic, phylogenetic and phylogenomic data, strain 10Sc9-8T represents a novel species of the genus Georgenia, for which the name Georgenia halotolerans sp. nov. is proposed. The type strain is 10Sc9-8T (=JCM 33946T=CPCC 206219T).


Asunto(s)
Actinobacteria , Actinomycetales , Ácidos Grasos/química , Suelo , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Microbiología del Suelo , Análisis de Secuencia de ADN , Fosfolípidos/química , Vitamina K 2/química
6.
J Antibiot (Tokyo) ; 76(9): 532-539, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37208458

RESUMEN

A novel Gram-stain-positive, aerobic, non-flagellated and rod-shaped actinobacterium, designated 10F1B-8-1T, was isolated from mangrove soil sampled at Futian Mangrove Nature Reserve, China. The isolate was able to grow at 10-40 °C (optimum 30-32 °C), at pH 6-8 (optimum 7) and in the presence of 0-6% (w/v) NaCl (optimum 0%). Strain 10F1B-8-1T shared the highest 16S rRNA gene sequence similarity to Protaetiibacter larvae NBRC 113051T (98.3%), followed by Protaetiibacter intestinalis NBRC 113050T (98.2%). Phylogenetic trees based on 16S rRNA gene sequences and the core proteomes exhibited that strain 10F1B-8-1T formed a new phyletic line in the clade of genus Protaetiibacter, indicating that this strain belonged to the genus Protaetiibacter. Strain 10F1B-8-1T showed low average nucleotide identity (<84%) and digital DNA-DNA hybridization values (<27%) with closely related taxa, suggesting that strain 10F1B-8-1T was a hitherto undescribed species of the genus Protaetiibacter. Strain 10F1B-8-1T contained D-2,4-diaminobutyric acid as the diagnostic diamino acid, and the peptidoglycan type was characterized as type B2ß. The major fatty acids were iso-C16:0, anteiso-C15:0 and anteiso-C17:0. The major menaquinones were MK-13 and MK-14. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and five unidentified lipids. Notably, the ethyl acetate extracts of strain 10F1B-8-1T showed effective antibacterial activity against Bacillus subtilis CPCC 100029 and Escherichia coli △tolC. According to the polyphasic data, strain 10F1B-8-1T should be classified as a novel species of the genus Protaetiibacter, for which the name Protaetiibacter mangrovi sp. nov. is proposed, with the type strain 10F1B-8-1T (=JCM 33142T = CPCC 205428T).


Asunto(s)
Actinomycetales , Suelo , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Ácidos Grasos/química , Fosfolípidos/química , Técnicas de Tipificación Bacteriana
7.
Mar Drugs ; 21(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36976192

RESUMEN

Mangrove actinomycetia have been proven to be one of the promising sources for discovering novel bioactive natural products. Quinomycins K (1) and L (2), two rare quinomycin-type octadepsipeptides without intra-peptide disulfide or thioacetal bridges, were investigated from the Maowei Sea mangrove-derived Streptomyces sp. B475. Their chemical structures, including the absolute configurations of their amino acids, were elucidated by a combination of NMR and tandem MS analysis, electronic circular dichroism (ECD) calculation, advanced Marfey's method, and further unequivocally confirmed by the first total synthesis. The two compounds displayed no potent antibacterial activity against 37 bacterial pathogens and had no significant cytotoxic activity against H460 lung cancer cells.


Asunto(s)
Equinomicina , Streptomyces , Streptomyces/metabolismo , Equinomicina/metabolismo , Antibacterianos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
8.
BMC Microbiol ; 23(1): 69, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922786

RESUMEN

BACKGROUND: Bioprospecting of actinobacteria isolated from Kubuqi desert, China for antibacterial, antifungal and cytotoxic metabolites production and their structure elucidation. RESULTS: A total of 100 actinobacteria strains were selectively isolated from Kubuqi desert, Inner Mongolia, China. The taxonomic characterization revealed Streptomyces as the predominant genus comprising 37 different species, along with the rare actinobacterial genus Lentzea. The methanolic extracts of 60.8% of strains exhibited potent antimicrobial activities against Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, Salmonella enterica, Saccharomyces cerevisiae and high to mild in vitro cytotoxicity against PC3 (prostate cancer) and A549 (lung carcinoma) cell lines. The metabolomics analysis by TLC, HPLC-UV/vis, HPLC-MS and NMR showed the presence of compounds with molecular weights ranging from 100 to 1000 Da. The scale-up fermentation of the prioritized anti-Gram-negative strain PU-KB10-4 (Streptomyces griseoviridis), yielded three pure compounds including; griseoviridin (1; 42.0 mgL- 1) with 20 fold increased production as compared to previous reports and its crystal structure as monohydrate form is herein reported for the first time, mitomycin C (2; 0.3 mgL- 1) and a new bacterial metabolite 4-hydroxycinnamide (3; 0.59 mgL- 1). CONCLUSIONS: This is the first report of the bioprospecting and exploration of actinobacteria from Kubuqi desert and the metabolite 4-hydroxycinnamide (3) is first time isolated from a bacterial source. This study demonstrated that actinobacteria from Kubuqi desert are a potential source of novel bioactive natural products. Underexplored harsh environments like the Kubuqi desert may harbor a wider diversity of actinobacteria, particularly Streptomyces, which produce unique metabolites and are an intriguing source to develop medicinally valuable natural products.


Asunto(s)
Actinobacteria , Productos Biológicos , Streptomyces , Mitomicina/metabolismo , Bioprospección , Filogenia , Antibacterianos/química , Productos Biológicos/farmacología
9.
Data Brief ; 46: 108877, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36691562

RESUMEN

The Streptomyces cavourensis strain 2BA6PGT was isolated from sediment from the bottom of the salt lake Verkhnee Beloe (Buryatia, Russia). This strain's 7,651,223 bp complete genome has a high G + C content of 72.1% and consists of 7,069 coding sequences and 315 subsystems. The 16S ribosomal RNA of isolate 2BA6PGT was most closely related to Streptomyces cavourensis strain NBRC 13026T (98.91% identity), followed by Streptomyces bacillaris strain ATCC 15855T (95.36%), Streptomyces rhizosphaericola strain 1AS2cT (94.68%), and Streptomyces pluricolorescens strain JCM 4602T (86.75%). These comparisons were supported by pairwise comparisons using average nucleotide identity (ANI) and DNA-DNA hybridization analysis. This is the first complete genome reported on Streptomyces cavourensis isolated from sediment from the bottom of the salt lake Verkhnee Beloe. The complete genome sequence has been deposited at the NCBI GenBank with an accession number CP101140.

10.
Microorganisms ; 10(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35630432

RESUMEN

Saxaul (Haloxylon ammodendron) is the most widespread plant community in the Gobi Desert in Mongolia, which plays important roles in wind control, sand fixation and water conservation. Investigations of soil-derived actinobacteria inhabiting in the saxaul forest in Gobi Desert in Mongolia have been scarce. In this study, biodiversity of culturable actinobacteria isolated from soil of the saxaul forest in Southern Gobi Aimak (Southern Gobi Province) of Mongolia was characterized and their potential to produce compounds with antibacterial activities was assessed. A total of 172 actinobacterial strains were recovered by culture-based approaches and were phylogenetically affiliated into 22 genera in 13 families of seven orders. Forty-nine actinobacterial isolates were selected to evaluate the antibacterial activities and their underlying mechanism of action was screened by means of a dual-fluorescent reporter assay (pDualrep2). Twenty-three isolates exhibited antagonistic activity against at least one of the tested pathogens, of which two Streptomyces strains can attenuate protein translation by ribosome stalling. Combinational strategies based on modern metabolomics, including bioassay-guided thin-layer chromatography (TLC), UPLC-QTOF-MS/MS based structural annotation and enhanced molecular networking successfully annotated chloramphenicol, althiomycin and granaticin and their derivatives as the antibacterial compounds from extracts in three Streptomyces strains, respectively. This work demonstrates that UPLC-MS/MS-based structural identification and enhanced molecular networking are effective strategies to rapidly illuminate the bioactive chemicals in the microbial extracts. Meanwhile, our results show that the saxaul forest in Mongolia Gobi Desert is a prospective source for discovering novel actinobacteria and biologically active compounds.

11.
Mar Drugs ; 19(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34940687

RESUMEN

Mangrove actinomycetia are considered one of the promising sources for discovering novel biologically active compounds. Traditional bioactivity- and/or taxonomy-based methods are inefficient and usually result in the re-discovery of known metabolites. Thus, improving selection efficiency among strain candidates is of interest especially in the early stage of the antibiotic discovery program. In this study, an integrated strategy of combining phylogenetic data and bioactivity tests with a metabolomics-based dereplication approach was applied to fast track the selection process. A total of 521 actinomycetial strains affiliated to 40 genera in 23 families were isolated from 13 different mangrove soil samples by the culture-dependent method. A total of 179 strains affiliated to 40 different genera with a unique colony morphology were selected to evaluate antibacterial activity against 12 indicator bacteria. Of the 179 tested isolates, 47 showed activities against at least one of the tested pathogens. Analysis of 23 out of 47 active isolates using UPLC-HRMS-PCA revealed six outliers. Further analysis using the OPLS-DA model identified five compounds from two outliers contributing to the bioactivity against drug-sensitive A. baumannii. Molecular networking was used to determine the relationship of significant metabolites in six outliers and to find their potentially new congeners. Finally, two Streptomyces strains (M22, H37) producing potentially new compounds were rapidly prioritized on the basis of their distinct chemistry profiles, dereplication results, and antibacterial activities, as well as taxonomical information. Two new trioxacarcins with keto-reduced trioxacarcinose B, gutingimycin B (16) and trioxacarcin G (20), together with known gutingimycin (12), were isolated from the scale-up fermentation broth of Streptomyces sp. M22. Our study demonstrated that metabolomics tools could greatly assist classic antibiotic discovery methods in strain prioritization to improve efficiency in discovering novel antibiotics from those highly productive and rich diversity ecosystems.


Asunto(s)
Actinobacteria/genética , Antibacterianos/farmacología , Humedales , Animales , Antibacterianos/química , Organismos Acuáticos , China , Evaluación Preclínica de Medicamentos , Metabolómica , Pruebas de Sensibilidad Microbiana
12.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34889730

RESUMEN

A Gram-stain-positive, aerobic, non-motile, non-spore-forming and coccus-shaped strain, designated strain G463T, was isolated from the rhizosphere soil of Salicornia europaea L. collected from Lake Gudzhirganskoe in Siberia. Based on 16S rRNA gene phylogeny, strain G463T belonged to the genus Hoyosella, with the highest 16S rRNA gene sequence similarity to Hoyosella altamirensis DSM 45258T (96.1%). The major fatty acids were C17:1 ω8c, C16:0, C15 : 0 and C17:0. The strain contained meso-diaminopimelic acid as the cell-wall diagnostic diamino acid and arabinose, galactose and ribose as the whole-cell sugars. MK-8 and MK-7 were the predominant menaquinones. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, one unidentified phosphoglycolipid, two unidentified glycolipids and several unidentified lipids. Acetyl was the muramyl residue. Mycolic acids (C28-C34) were present. The G+C content of the genomic DNA was 68.3 mol%. Based on its phylogenetic, phenotypic and chemotaxonomic features, strain G463T was considered to represent a novel species of the genus Hoyosella, for which the name Hoyosella lacisalsi sp. nov. is proposed. The type strain is G463T (=JCM 33650T=CGMCC 1.17230T).


Asunto(s)
Lagos , Mycobacteriaceae/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Lagos/microbiología , Mycobacteriaceae/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Siberia , Vitamina K 2/química
13.
Antonie Van Leeuwenhoek ; 114(10): 1657-1667, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34338934

RESUMEN

A novel actinobacterial strain, designated 10F1D-1T, was isolated from soil sample collected from Futian mangrove nature reserve, China using of the in situ cultivation technique. Preliminary analysis based on the 16S rRNA gene sequence revealed that strain 10F1D-1T was the member of genus Schumannella with sharing highest sequence similarity (99.7%) to Schumannella luteola DSM 23141T. Phylogenetic analyses based on 16S rRNA gene sequences and core proteome consistently exhibited that strain 10F1D-1T formed a monophyletic clade with Schumannella luteola DSM 23141T. Comparative genomic analyses clearly separated strain 10F1D-1T from the only species of the genus Schumannella based on average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values below the thresholds for species delineation. The genome of strain 10F1D-1T contains the biosynthetic gene clusters for osmoprotectants to adapt to the salt environment of mangrove. Strain 10F1D-1T also contains the biosynthetic gene clusters for bioactive compounds as secondary metabolites. On the basis of the polyphasic analysis, strain 10F1D-1T is considered to represent a novel species of the genus Schumannella, for which the name Schumannella soli sp. nov. (type strain 10F1D-1T = CGMCC1.16699T = JCM 33146T) is proposed.


Asunto(s)
Actinobacteria , Suelo , Actinobacteria/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
14.
Sci Rep ; 11(1): 11340, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059761

RESUMEN

Exploiting a pure culture strategy to investigate the composition of the human gut microbiota, two novel anaerobes, designated strains AF52-21T and CM04-06T, were isolated from faeces of two healthy Chinese donors and characterized using a polyphasic approach. The two strains were observed to be gram-negative, non-motile, and rod-shaped. Both strains grew optimally at 37 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains clustered with species of the genus Faecalibacterium and were most closely related to Faecalibacterium prausnitzii ATCC 27768T with sequence similarity of 97.18% and 96.87%, respectively. The two isolates shared a 16S rRNA gene sequence identity of 98.69%. Draft genome sequencing was performed for strains AF52-21T and CM04-06T, generating genome sizes of 2.85 Mbp and 3.01 Mbp. The calculated average nucleotide identity values between the genomes of the strains AF52-21T and CM04-06T compared to Faecalibacterium prausnitzii ATCC 27768T were 83.20% and 82.54%, respectively, and 90.09% when comparing AF52-21T and CM04-06T. Both values were below the previously proposed species threshold (95-96%), supporting their recognition as novel species in the genus Faecalibacterium. The genomic DNA G + C contents of strains AF52-21T and CM04-06T calculated from genome sequences were 57.77 mol% and 57.51 mol%, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, we conclude that both strains represent two new Faecalibacterium species, for which the names Faecalibacterium butyricigenerans sp. nov. (type strain AF52-21T = CGMCC 1.5206T = DSM 103434T) and Faecalibacterium longum sp. nov. (type strain CM04-06T = CGMCC 1.5208T = DSM 103432T) are proposed.


Asunto(s)
Faecalibacterium/genética , Faecalibacterium/aislamiento & purificación , Adulto , Niño , Heces/microbiología , Femenino , Genoma Bacteriano , Humanos , Masculino , ARN Ribosómico 16S/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-34181514

RESUMEN

Members within the family Rhodbacteraceae are morphologically and genetically highly diverse, and originate mostly from coastal marine environments. In this study, a novel species of this family, designated M0103T, was isolated from the surface of a sea snail Littorina scabra. Strain M0103T is Gram-stain-negative, halophilic, non-motile and non-Bacteriochlorophyll a-producing bacterium. Several phenotypic characteristics of the isolate were similar to other species within this family, such as the sole respiratory quinone Q-10 and major fatty acid components C18 : 1 ω7c, C18 : 0 and C16 : 0. Strain M0103T contains a diphosphatidylglycerol, a phosphatidylglycerol, a phosphatidylcholine, a phosphatidy ethanolamine, a phosphatidylinositol, five unidentified phospholipids and four unidentified polar lipids. Based on the 16S rRNA gene sequence analysis, this isolate showed the closest phylogenetic relationship with 'Palleronia pontilimi' GH1-23T (95.1 %). Values of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) of genome sequences were of 70.1-76.4 % and 18.3-20.9 % between the isolate and 24 closely related type strains. Analysis the 4.0 Mb genome of strain M0103T revealed several putative genes associated with cellular stress resistance, which may play protective roles for the isolate in the adaptation to a marine environment. Phylogenetic, phenotypic and chemotaxonomic analyses suggested that strain M0103T represents a novel genus and novel species of the family Rhodobacteraceae, for which the name Mesobaculum littorinae gen. nov., sp. nov. is proposed. The type strain is M0103T (=MCCC 1K03619T=KCTC 62358T).


Asunto(s)
Lactobacillales/aislamiento & purificación , Caracoles/microbiología , Animales , Técnicas de Tipificación Bacteriana , Ácidos Grasos/análisis , Ácidos Grasos/química , Lactobacillales/genética , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
16.
J Pharm Anal ; 11(2): 241-250, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34012700

RESUMEN

Three hundred and twenty endophytic actinobacterial strains were isolated from psammophytes collected from Taklamakan Desert and identified. Among them, three strains already had been identified as new species of two genera and sixteen isolates showed relatively low 16S rRNA similarities < 98.6% to validly described species. Seventy-five of the isolates were selected as representative strains to screen antibacterial activity and mechanism. Forty-seven strains showed antagonistic activity against at least one of the indicator bacteria. Two Streptomyces strains produced bioactive compounds inducing DNA damage, and two Streptomyces strains produced bioactive compounds with inhibitory activity on protein biosynthesis. Notably, the strain Streptomyces sp. 8P21H-1 that demonstrated both strong antibacterial activity and inhibitory activity on protein biosynthesis was prioritized for exploring new antibiotics. Under the strategy of integrating genetics-based discovery program and MS/MS-based molecular networking, two new streptogramin-type antibiotics, i.e., acetyl-griseoviridin and desulphurizing griseoviridin, along with known griseoviridin, were isolated from the culture broth of strain 8P21H-1. Their chemical structures were determined by HR-MS, and 1D and 2D NMR. Desulphurizing griseoviridin and griseoviridin exhibited antibacterial activities by inhibiting translation.

17.
Artículo en Inglés | MEDLINE | ID: mdl-33909548

RESUMEN

A Gram-stain-positive, aerobic, non-motile, non-endospore-forming and rod-shaped actinobacterium, designated strain CMS6Z-2T, was isolated from a surface-sterilized branch of Kandelia candel collected from the Maowei Sea, Guangxi Zhuang Autonomous Region, PR China. Strain CMS6Z-2T grew at 10-37 °C (optimum, 37 °C), pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-10.0 % (w/v) NaCl (optimum, 0-1.0 %). Strain CMS6Z-2T possessed meso-diaminopimelic acid as the diamino acid of the peptidoglycan and MK-8 (H4) as the predominant menaquinone. The major fatty acids were iso-C15 : 0, C16 : 0 and C18 : 1 ω9c. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and two unknown phospholipids. The G+C content of the genomic DNA was 74.1 mol%. Comparative analysis of 16S rRNA genes showed that strain CMS6Z-2T should be assigned to the genus Phycicoccus and its closest relative was Phycicoccus endophyticus IP6SC6T with 98.3 % similarity. Phylogenetic analyses based on 16S rRNA gene sequence and phylogenomic analysis based on core proteomes alignment revealed that strain CMS6Z-2T belonged to the genus Phycicoccus and formed a robust cluster with Phycicoccus endophyticus IP6SC6T within the genus Phycicoccus. The average nucleotide identity value and estimated digital DNA-DNA hybridization value between strain CMS6Z-2T and the type strain of Phycicoccus endophyticus were 81.5 and 23.9 %, respectively. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain CMS6Z-2T represents a novel species of the genus Phycicoccus, for which the name Phycicoccus flavus sp. nov. is proposed. The type strain is CMS6Z-2T (=KCTC 49240T=CGMCC4.7549T).


Asunto(s)
Actinobacteria/clasificación , Filogenia , Rhizophoraceae/microbiología , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Syst Appl Microbiol ; 44(3): 126201, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33892267

RESUMEN

A novel, non-motile, Gram-stain-positive, non-spore-forming, obligate anaerobic bacterium, designated strain TF01-11T, was isolated from human faeces. The isolate was characterized by phylogenetic and phenotypic properties, as well as by determination of its whole genome sequence. The growth temperature and pH ranges were 30-42 °C and 6.0-8.5, respectively. The end products of glucose fermentation were butyric acid and a small amount of acetic acid. The genome was estimated to be 3.61 Mbp with G + C content of 36.8 mol%. Genes related to biosynthesis of diaminopimelic acid, polar lipids, polyamines, teichoic and lipoteichoic acids were present. The predominant fatty acids were C16:0 (37.9%), C14:0 (16.4%), C13:0 OH/iso-C15:1H (11.1%) and C18:1ω9c (10.6%). Phylogenetic analyses based on 16S rRNA gene sequences demonstrated that the isolate was a member of family Lachnospiraceae, with the highest sequence similarity to the type strain of Roseburia intestinalis DSM 14610T (92.2%), followed by Acetivibrio ethanolgignens ATCC 33324T (92.0%). The average nucleotide identity (ANI) and average amino acid identity (AAI) values between strain TF01-11T and these closest relatives were less than 70.5% and 52.3%. Based on results of phenotypic characteristics and genotypic properties presented in this study, strain TF01-11T represents a novel species in a new genus, for which the name Butyribacter intestini gen. nov., sp. nov. is proposed. The type strain of the type species is TF01-11T (CGMCC 1.5203T = DSM 105140T). In addition, Acetivibrio ethanolgignens is proposed to be reclassified as Acetanaerobacter ethanolgignens gen. nov., comb. nov.


Asunto(s)
Ácido Butírico/metabolismo , Clostridiales/clasificación , Firmicutes/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Heces/microbiología , Firmicutes/aislamiento & purificación , Humanos , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Front Microbiol ; 12: 604999, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790875

RESUMEN

Taklamakan desert is known as the largest dunefield in China and as the second largest shifting sand desert in the world. Although with long history and glorious culture, the Taklamakan desert remains largely unexplored and numerous microorganisms have not been harvested in culture or taxonomically identified yet. The main objective of this study is to explore the diversity, novelty, and pharmacological potential of the cultivable actinomycetes from soil samples at various sites along the Alar-Hotan desert highway in the Taklamakan desert. A total of 590 actinobacterial strains were recovered by the culture-dependent approach. Phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences unveiled a significant level of actinobacterial diversity with 55 genera distributed in 27 families of 12 orders. Thirty-six strains showed relatively low 16S rRNA similarities (<98.65%) with validly described species, among which four strains had already been characterized as novel taxa by our previous research. One hundred and forty-six actinobacterial isolates were selected as representatives to evaluate the antibacterial activities and mechanism of action by the paper-disk diffusion method and a double fluorescent protein reporter "pDualrep2" system, respectively. A total of 61 isolates exhibited antagonistic activity against the tested "ESKAPE" pathogens, among which seven strains could produce bioactive metabolites either to be able to block translation machinery or to induce SOS-response in the pDualrep2 system. Notably, Saccharothrix sp. 16Sb2-4, harboring a promising antibacterial potential with the mechanism of interfering with protein translation, was analyzed in detail to gain deeper insights into its bioactive metabolites. Through ultra-performance liquid chromatography (UPLC)-quadrupole time-of-flight (QToF)-MS/MS based molecular networking analysis and databases identification, four families of compounds (1-16) were putatively identified. Subsequent bioassay-guided separation resulted in purification of four 16-membered macrolide antibiotics, aldgamycin H (8), aldgamycin K (9), aldgamycin G (10), and swalpamycin B (11), and their structures were elucidated by HR-electrospray ionization source (ESI)-MS and NMR spectroscopy. All compounds 8-11 displayed antibacterial activities by inhibiting protein synthesis in the pDualrep2 system. In conclusion, this work demonstrates that Taklamakan desert is a potentially unique reservoir of versatile actinobacteria, which can be a promising source for discovery of novel species and diverse bioactive compounds.

20.
ACS Omega ; 6(12): 8239-8245, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33817482

RESUMEN

Herein, we report a concise and stereoselective approach for the asymmetric total synthesis of hetiamacins A-F on the basis of the total synthesis of amicoumacin C, which could be synthesized from a known l-aspartic acid derivative. The synthesis of hetiamacin A was accomplished by an 11-step sequence that featured 1,3-oxazinane ring formation of amicoumacin B followed by amidation in one pot. Hetiamacins B-F were synthesized from amicoumacin A in only one step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...