Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3639, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336903

RESUMEN

Stable lithium metal negative electrodes are desirable to produce high-energy batteries. However, when practical testing conditions are applied, lithium metal is unstable during battery cycling. Here, we propose poly(2-hydroxyethyl acrylate-co-sodium benzenesulfonate) (PHS) as negative electrode protective layer. The PHS contains soft poly (2-hydroxyethyl acrylate) and poly(sodium p-styrene sulfonate), which improve electrode flexibility, connection with the Cu current collector and transport of Li ions. Transmission electron cryomicroscopy measurements reveal that PHS induces the formation of a solid electrolyte interphase with a fluorinated rigid and crystalline internal structure. Furthermore, theoretical calculations suggest that the -SO3- group of poly(sodium p-styrene sulfonate) promotes Li-ion motion towards interchain migration through cation-dipole interaction, thus, enabling uniform Li-ion diffusion. Electrochemical measurements of Li | |PHS-coated-Cu coin cells demonstrate an average Coulombic efficiency of 99.46% at 1 mA/cm2, 6 mAh/cm2 and 25 °C. Moreover, when the PHS-coated Li metal negative electrode is paired with a high-areal-capacity LiNi0.83Co0.11Mn0.06O2-based positive electrode in multi-layer pouch cell configuration, the battery delivers an initial capacity of 6.86 Ah (corresponding to a specific energy of 489.7 Wh/kg) and, a 91.1% discharge capacity retention after 150 cycles at 2.5 mA/cm2, 25 °C and 172 kPa.

2.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241917

RESUMEN

Aqueous zinc-ion batteries (AZIBs) show enormous potential as a large-scale energy storage technique. However, the growth of Zn dendrites and serious side reactions occurring at the Zn anode hinder the practical application of AZIBs. For the first time, we reported a fluorine-containing surfactant, i.e., potassium perfluoro-1-butanesulfonate (PPFBS), as an additive to the 2 M ZnSO4 electrolyte. Benefitting from its hydrophilic sulfonate anion and hydrophobic long fluorocarbon chain, PPFBS can promote the uniform distribution of Zn2+ flux at the anode/electrolyte interface, allowing the Zn/Zn cell to cycle for 2200 h. Furthermore, PPFBS could inhibit side reactions due to the existence of the perfluorobutyl sulfonate (C4F9SO3-) adsorption layer and the presence of C4F9SO3- in the solvation structure of Zn2+. The former can reduce the amount of H2O molecules and SO42- in contact with the Zn anode and C4F9SO3- entering the Zn2+-solvation structure by replacing SO42-. The Zn/Cu cell exhibits a superior average CE of 99.47% over 500 cycles. When coupled with the V2O5 cathode, the full cell shows impressive cycle stability. This work provides a simple, effective, and economical solution to the common issues of the Zn anode.

3.
Adv Mater ; 32(45): e2003592, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33015911

RESUMEN

Low-cost and high-safety aqueous Zn-ion batteries are an exceptionally compelling technology for grid-scale energy storage. However, their development has been plagued by the lack of stable cathode materials allowing fast Zn2+ -ion insertion and scalable synthesis. Here, a lattice-water-rich, inorganic-open-framework (IOF) phosphovanadate cathode, which is mass-producible and delivers high capacity (228 mAh g-1 ) and energy density (193.8 Wh kg-1 or 513 Wh L-1 ), is reported. The abundant lattice waters functioning as a "charge shield" enable a low Zn2+ -migration energy barrier, (0.66 eV) even close to that of Li+ within LiFePO4 . This fast intrinsic ion-diffusion kinetics, together with nanostructure effect, allow the achievements of ultrafast charging (71% state of charge in 1.9 min) and an ultrahigh power density (7200 W kg-1 at 107 Wh kg-1 ). Equally important, the IOF exhibits a quasi-zero-strain feature (<1% lattice change upon (de)zincation), which ensures ultrahigh cycling durability (3000 cycles) and Coulombic efficiencies of 100%. The cell-level energy and power densities reach ≈90 Wh kg-1 and ≈3320 W kg-1 , far surpassing commercial lead-acid, Ni-Cd, and Ni-MH batteries. Lattice-water-rich IOFs may open up new opportunities for exploring stable and fast-charging Zn-ion batteries.

4.
J Cell Mol Med ; 24(19): 11397-11408, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827242

RESUMEN

Accumulating evidence suggests that circular RNAs have the abilities to regulate gene expression during the progression of sepsis-associated acute kidney injury. Circular RNA VMA21 (circVMA21), a recent identified circular RNA, could reduce apoptosis to alleviate intervertebral disc degeneration in rats and protect WI-38 cells from lipopolysaccharide-induced injury. However, the role of circVMA21 in sepsis-associated acute kidney injury (sepsis-associated AKI) is unknown. In this study, we first demonstrated that circVMA21 alleviated sepsis-associated AKI by reducing apoptosis and inflammation in rats and HK-2 cells. Additionally, to explore the molecule mechanism underlying the amelioration, after the bioinformatics analysis, we confirmed that miR-9-3p directly bound to circVMA21 by luciferase and RNA immunoprecipitation assay, and the effector protein of miR-9-3p was SMG1. Furthermore, the oxidative stress caused by sepsis-associated AKI was down-regulated by circVMA21. In conclusion, circVMA21 plays an important role in the regulating sepsis-associated AKI via adjusting miR-9-39/SMG1/inflammation axis and oxidative stress.


Asunto(s)
Lesión Renal Aguda/complicaciones , Inflamación/genética , MicroARNs/genética , Estrés Oxidativo/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Circular/metabolismo , Sepsis/complicaciones , Transducción de Señal , Lesión Renal Aguda/genética , Animales , Apoptosis , Secuencia de Bases , Ciego/patología , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ligadura , Lipopolisacáridos , MicroARNs/metabolismo , Punciones , ARN Circular/genética , Ratas Wistar , Sepsis/genética
5.
Chem Sci ; 11(23): 6045-6052, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34094097

RESUMEN

Potassium-selenium (K-Se) batteries offer fairly high theoretical voltage (∼1.88 V) and energy density (∼1275 W h kgSe -1). However, in practice, their operation voltage is so far limited to ∼1.4 V, resulting in insufficient energy utilization and mechanistic understanding. Here, it is demonstrated for the first time that K-Se batteries operating in concentrated ether-based electrolytes follow distinctive reaction pathways involving reversible stepwise conversion reactions from Se to K2Se x (x = 5, 3, 2, 1). The presence of redox intermediates K2Se5 at ∼2.3 V and K2Se3 at ∼2.1 V, in contrast with previous reports, enables record-high average discharge plateau voltage (1.85 V) and energy density (998 W h kgSe -1 or 502 W h kgK2Se -1), both approaching the theoretical limits and surpassing those of previously reported Na/K/Al-Se batteries. Moreover, experimental analysis and first-principles calculations reveal that the effective suppression of detrimental polyselenide dissolution/shuttling in concentrated electrolytes, together with high electron conductibility of Se/K2Se x , enables fast reaction kinetics, efficient utilization of Se, and long-term cyclability of up to 350 cycles, which are impracticable in either K-S counterparts or K-Se batteries with low/moderate-concentration electrolytes. This work may pave the way for mechanistic understanding and full energy utilization of K-Se battery chemistry.

6.
Angew Chem Int Ed Engl ; 58(46): 16474-16479, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31449348

RESUMEN

A key challenge for potassium-ion batteries is to explore low-cost electrode materials that allow fast and reversible insertion of large-ionic-size K+ . Here, we report an inorganic-open-framework anode (KTiOPO4 ), which achieves a reversible capacity of up to 102 mAh g-1 (307 mAh cm-3 ), flat voltage plateaus at a safe average potential of 0.82 V (vs. K/K+ ), a long lifespan of over 200 cycles, and K+ -transport kinetics ≈10 times faster than those of Na-superionic conductors. Combined experimental analysis and first-principles calculations reveal a charge storage mechanism involving biphasic and solid solution reactions and a cell volume change (9.5 %) even smaller than that for Li+ -insertion into graphite (≈10 %). KTiOPO4 exhibits quasi-3D lattice expansion on K+ intercalation, enabling the disintegration of small lattice strain and thus high structural stability. The inorganic open-frameworks may open a new avenue for exploring low-cost, stable and fast-kinetic battery chemistry.

7.
Chem Sci ; 10(9): 2604-2612, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996976

RESUMEN

Rechargeable potassium-ion batteries (PIBs) show promise beyond Li-ion technology in large-scale electrical-energy storage due to the abundance and low cost of potassium resources. However, the intercalation of large-size K+ generally results in irreversible structural degradation and short lifespan to the hosts, representing a major obstacle. Here, we report a new electrochemical K+-intercalation host, tungsten disulfide (WS2), which can store 0.62 K+ per formula unit with a reversible capacity of 67 mA h g-1 and well-defined voltage plateaus at an intrinsically safe average operation potential of 0.72 V versus K/K+. In situ X-ray diffraction and ex situ electron microscopy revealed the underlying intercalation mechanism, a relatively small cell volume change (37.81%), and high reversibility of this new battery chemistry. Such characteristics impart WS2 with ultrahigh structural stability and a long lifespan, regardless of deep or fast charging. WS2 achieved record-high cyclability among chalcogenides up to 600 cycles with 89.2% capacity retention at 0.3C, and over 1000 cycles with 96.3% capacity retention and an extraordinary average Coulombic efficiency of 99.90% at 2.2C. This intercalation electrochemistry may open up new opportunities for the design of long-cycle-life and high-safety PIBs.

8.
Chem Sci ; 9(29): 6193-6198, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30090306

RESUMEN

Storing as many as three K-ions per atom, bismuth is a promising anode material for rechargeable potassium-ion batteries that may replace lithium-ion batteries for large-scale electrical energy storage. However, Bi suffers from poor electrochemical cyclability in conventional electrolytes. Here, we demonstrate that a 5 molar (M) ether-based electrolyte, versus the typical 1 M electrolyte, can effectively passivate the bismuth surface due to elevated reduction resistance. This protection allows a bismuth-carbon anode to simultaneously achieve high specific capacity, electrochemical cyclability and Coulombic efficiency, as well as small potential hysteresis and improved rate capability. We show that at a high electrolyte concentration, the bismuth anode demonstrates excellent cyclability over 600 cycles with 85% capacity retention and an average Coulombic efficiency of 99.35% at 200 mA g-1. This "concentrated electrolyte" approach provides unexpected new insights to guide the development of long-cycle-life and high-safety potassium-ion batteries.

9.
ACS Nano ; 11(9): 9231-9238, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28792746

RESUMEN

Attaining aqueous solutions of individual, long single-walled carbon nanotubes is a critical first step for harnessing the extraordinary properties of these materials. However, the widely used ultrasonication-ultracentrifugation approach and its variants inadvertently cut the nanotubes into short pieces. The process is also time-consuming and difficult to scale. Here we present an unexpectedly simple solution to this decade-old challenge by directly neutralizing a nanotube-chlorosulfonic acid solution in the presence of sodium deoxycholate. This straightforward superacid-surfactant exchange eliminates the need for both ultrasonication and ultracentrifugation altogether, allowing aqueous solutions of individual nanotubes to be prepared within minutes and preserving the full length of the nanotubes. We found that the average length of the processed nanotubes is more than 350% longer than sonicated controls, with a significant fraction approaching ∼9 µm, a length that is limited by only the raw material. The nondestructive nature is manifested by an extremely low density of defects, bright and homogeneous photoluminescence in the near-infrared, and ultrahigh electrical conductivity in transparent thin films (130 Ω/sq at 83% transmittance), which well exceeds that of indium tin oxide. Furthermore, we demonstrate that our method is fully compatible with established techniques for sorting nanotubes by their electronic structures and can also be readily applied to graphene. This surprisingly simple method thus enables nondestructive aqueous solution processing of high-quality carbon nanomaterials at large-scale and low-cost with the potential for a wide range of fundamental studies and applications, including, for example, transparent conductors, near-infrared imaging, and high-performance electronics.


Asunto(s)
Ácido Desoxicólico/química , Nanotubos de Carbono/química , Ácidos Sulfónicos/química , Tensoactivos/química , Agua/química , Conductividad Eléctrica , Luminiscencia , Nanotecnología/métodos , Nanotubos de Carbono/ultraestructura , Solubilidad
10.
Nano Lett ; 16(9): 5875-82, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27518908

RESUMEN

Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

11.
Nanoscale ; 8(26): 12958-69, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27304986

RESUMEN

Ordered mesoporous carbons (OMCs) are ideal host materials that can provide the desirable electrical conductivity and ion accessibility for high-capacity oxide electrode materials in lithium-ion batteries (LIBs). To this end, however, it is imperative to establish the correlations among material morphology, pore structure and electrochemical performance. Here, we fabricate an ordered mesoporous carbon nanowire (OMCNW)/Fe2O3 composite utilizing a novel soft-hard dual-template approach. The structure and electrochemical performance of OMCNW/Fe2O3 were systematically compared with single-templated OMC/Fe2O3 and carbon nanowire/Fe2O3 composites. This dual-template strategy presents synergetic effects combining the advantages of both soft and hard single-template methods. The resulting OMCNW/Fe2O3 composite enables a high pore volume, high structural stability, enhanced electrical conductivity and Li(+) accessibility. These features collectively enable excellent electrochemical cyclability (1200 cycles) and a reversible Li(+) storage capacity as high as 819 mA h g(-1) at a current density of 0.5 A g(-1). Our findings highlight the synergistic benefits of the dual-template approach to heterogeneous composites for high performance electrochemical energy storage materials.

12.
Adv Mater ; 28(31): 6672-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27214267

RESUMEN

The selective growth of Al2 O3 islands over defect sites on the surface of carbon nanotubes significantly increases the oxidation breakdown threshold to 6.8 W cm(-2) , more than double than that of unprotected films. The elevated input power enables thermoacoustic emissions at loud audible sound pressure levels of 90.1 dB, which are inaccessible with the unprotected films.

13.
Langmuir ; 31(25): 6948-55, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26020583

RESUMEN

Experiments probing the properties of individual carbon nanotubes (CNTs) and those measuring bulk composites show vastly different results. One major issue limiting the results is that the procedures required to separate and test CNTs introduce contamination that changes the properties of the CNT. These contamination residues often come from the resist used in lithographic processing and the surfactant used to suspend and deposit the CNTs, commonly sodium dodecyl sulfate (SDS). Here we present ammonium laurate (AL), a surfactant that has previously not been used for this application, which differs from SDS only by substitution of ionic constituents but shows vastly cleaner depositions. In addition, we show that compared to SDS, AL-suspended CNTs have greater shelf stability and more selective dispersion. These results are verified using transmission electron microscopy, atomic force microscopy, ζ-potential measurements, and Raman and absorption optical spectroscopy. This surfactant is simple to prepare, and the nanotube solutions require minimal sonication and centrifugation in order to outperform SDS.

14.
Small ; 11(1): 96-102, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25180916

RESUMEN

Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double-walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ∼62% retention of the ON-state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON-state conductance.


Asunto(s)
Metales/química , Nanotubos de Carbono/química , Benceno/química , Electricidad , Factores de Tiempo , Transistores Electrónicos
15.
Nano Lett ; 15(1): 703-8, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25513731

RESUMEN

Silicon can store Li(+) at a capacity 10 times that of graphite anodes. However, to harness this remarkable potential for electrical energy storage, one has to address the multifaceted challenge of volume change inherent to high capacity electrode materials. Here, we show that, solely by chemical tailoring of Si-carbon interface with atomic oxygen, the cycle life of Si/carbon matrix-composite electrodes can be substantially improved, by 300%, even at high mass loadings. The interface tailored electrodes simultaneously attain high areal capacity (3.86 mAh/cm(2)), high specific capacity (922 mAh/g based on the mass of the entire electrode), and excellent cyclability (80% retention of capacity after 160 cycles), which are among the highest reported. Even at a high rate of 1C, the areal capacity approaches 1.61 mAh/cm(2) at the 500th cycle. This remarkable electrochemical performance is directly correlated with significantly improved structural and electrical interconnections throughout the entire electrode due to chemical tailoring of the Si-carbon interface with atomic oxygen. Our results demonstrate that interfacial bonding, a new dimension that has yet to be explored, can play an unexpectedly important role in addressing the multifaceted challenge of Si anodes.

16.
ACS Nano ; 7(9): 8295-302, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23987736

RESUMEN

The engineering of hollow nanostructures is a promising approach to addressing instabilities in silicon-based electrodes for lithium-ion batteries. Previous studies showed that a SiOx coating on silicon nanotubes (SiNTs) could function as a constraining layer and enhance capacity retention in electrodes with low mass loading, but we show here that similarly produced electrodes having negligible SiOx coating and significantly higher mass loading show relatively low capacity retention, fading quickly within the early cycles. We find that the SiNT performance can still be enhanced, even in electrodes with high mass loading, by the use of Ni functional coatings on the outer surface, leading to greatly enhanced capacity retention in a manner that could scale better to industrially relevant battery capacities. In situ transmission electron microscopy studies reveal that the Ni coatings suppress the Si wall from expanding outward, instead carrying the large hoop stress and forcing the Si to expand inward toward the hollow inner core. Evidence shows that these controlled volume changes in Ni-coated SiNTs, accompanied by the electrochemically inert nature of Ni coatings, unlike SiOx, may enhance the stability of the electrolyte at the outer surface against forming a thick solid electrolyte interphase (SEI) layer. These results provide useful guidelines for designing nanostructured silicon electrodes for viable lithium-ion battery applications.

17.
ACS Nano ; 7(3): 2717-24, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23402623

RESUMEN

Interfacial instability is a fundamental issue in heterostructures ranging from biomaterials to joint replacement and electronic packaging. This challenge is particularly intriguing for lithium ion battery anodes comprising silicon as the ion storage material, where ultrahigh capacity is accompanied by vast mechanical stress that threatens delamination of silicon from the current collectors at the other side of the interface. Here, we describe Si-beaded carbon nanotube (CNT) strings whose interface is controlled by chemical functionalization, producing separated amorphous Si beads threaded along mechanically robust and electrically conductive CNT. In situ transmission electron microscopy combined with atomic and continuum modeling reveal that the chemically tailored Si-C interface plays important roles in constraining the Si beads, such that they exhibit a symmetric "radial breathing" around the CNT string, remaining crack-free and electrically connected throughout lithiation-delithiation cycling. These findings provide fundamental insights in controlling nanostructured interfaces to effectively respond to demanding environments such as lithium batteries.

18.
J Am Chem Soc ; 135(6): 2306-12, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23327103

RESUMEN

Atom-thick materials such as single-walled carbon nanotubes (SWCNTs) and graphene exhibit ultrahigh sensitivity to chemical perturbation partly because all of the constituent atoms are surface atoms. However, low selectivity due to nonspecific binding on the graphitic surface is a challenging issue to many applications including chemical sensing. Here, we demonstrated simultaneous attainment of high sensitivity and selectivity in thin-film field effect transistors (TFTs) based on outer-wall selectively functionalized double-walled carbon nanotubes (DWCNTs). With carboxylic acid functionalized DWCNT TFTs, we obtained excellent gate modulation (on/off ratio as high as 4000) with relatively high ON currents at a CNT areal density as low as 35 ng/cm(2). The devices displayed an NH(3) sensitivity of 60 nM (or ~1 ppb), which is comparable to small molecule aqueous solution detection using state-of-the-art SWCNT TFT sensors while concomitantly achieving 6000 times higher chemical selectivity toward a variety of amine-containing analyte molecules over that of other small molecules. These results highlight the potential of using covalently functionalized double-walled carbon nanotubes for simultaneous ultrahigh selective and sensitive detection of chemicals and illustrate some of the structural advantages of this double-wall materials strategy to nanoelectronics.


Asunto(s)
Amoníaco/análisis , Electrónica , Nanotubos de Carbono/química , Ácidos Carboxílicos/química , Grafito/química , Propiedades de Superficie
19.
Chem Commun (Camb) ; 48(35): 4220-2, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22441625

RESUMEN

A new polar material containing two types of stereoactive lone-pairs has been synthesized. The unique parallel alignment of the stereoactive lone-pairs on Pb(2+) cations and the synergistic effect of two types of stereoactive lone-pairs on I(5+) and Pb(2+) cations make it exhibit a very large second-harmonic generation response of about 8 × KDP (KH(2)PO(4)).

20.
J Phys Condens Matter ; 23(39): 395501, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21918290

RESUMEN

A first-principles study of the electronic structure, the linear optical properties and second-order NLO properties of calcium fluoroborate (Ca(5)(BO(3))(3)F, or CBF) crystal has been performed within density functional theory and the independent-particle approximation. The results indicate that the calculated birefringence Δn and the second-order susceptibilities are very coincident with the experimental measured values, and the χ((2)) curves show stronger anisotropy than the linear optical properties. Further analysis based on the spectral and spatial decomposition of χ((2)) reveals that the main sources of the SHG response of CBF are from the planar BO(3) groups (74%-77%) and Ca(2+) cations (23%-26%) and can be attributed to the interband electronic transition from the nonbonding O 2p states to the B 2p and Ca 4s4p states. The packing arrangement of BO(3) is the principal contributor to the significant differences among SHG tensors in CBF. Meanwhile, for a certain crystal CBF, the SHG tensors' trend can be the trend of the optical transition matrix elements, which are high when the corresponding subscript directions have more parallel BO(3) triangular planes in the structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...