Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732915

RESUMEN

The precision requirements for aeroengine blade machining are exceedingly stringent. This study aims to improve the accuracy of existing aeroengine blade measurement methods while achieving comprehensive measurement. Therefore, this study proposes a new concentric ring calibration method and designs a multi-layer concentric ring calibration plate. The effectiveness of this calibration method was verified through actual testing of standard ball gauges. Compared with the checkerboard-grid calibration method, the average deviation of the multilayer concentric ring calibration method for measuring the center distance of the standard sphere is 0.02352, which improves the measurement accuracy by 3-4 times. On the basis of multi-layer concentric ring calibration, this study builds a fringe projection profiler based on the three-frequency twelve-step phase shift method. Compared with the CMM, the average deviation of the blade chord length measured by this solution is 0.064, which meets the measurement index requirements of aeroengine fan blades.

2.
Environ Sci Technol ; 58(20): 8955-8965, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718175

RESUMEN

The development of Fe-based catalysts for the selective catalytic reduction of NOx by NH3 (NH3-SCR of NOx) has garnered significant attention due to their exceptional SO2 resistance. However, the influence of different sulfur-containing species (e.g., ferric sulfates and ammonium sulfates) on the NH3-SCR activity of Fe-based catalysts as well as its dependence on exposed crystal facets of Fe2O3 has not been revealed. This work disclosed that nanorod-like α-Fe2O3 (Fe2O3-NR) predominantly exposing (110) facet performed better than nanosheet-like α-Fe2O3 (Fe2O3-NS) predominantly exposing (001) facet in NH3-SCR reaction, due to the advantages of Fe2O3-NR in redox properties and surface acidity. Furthermore, the results of the SO2/H2O resistance test at a critical temperature of 250 °C, catalytic performance evaluations on Fe2O3-NR and Fe2O3-NS sulfated by SO2 + O2 or deposited with NH4HSO4 (ABS), and systematic characterization revealed that the reactivity of ammonium sulfates on Fe2O3 catalysts to NO(+O2) contributed to their improved catalytic performance, while ferric sulfates showed enhancing and inhibiting effects on NH3-SCR activity on Fe2O3-NR and Fe2O3-NS, respectively; despite this, Fe2O3-NR showed higher affinity for SO2 + O2. This work set a milestone in understanding the NH3-SCR reaction on Fe2O3 catalysts in the presence of SO2 from the aspect of crystal facet engineering.


Asunto(s)
Amoníaco , Catálisis , Amoníaco/química , Dióxido de Azufre/química , Compuestos Férricos/química , Oxidación-Reducción
3.
Dalton Trans ; 53(4): 1663-1672, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168800

RESUMEN

The electrocatalytic mechanisms of CO2 reduction catalyzed by pyridine-oxazoline (pyrox)-based Mn catalysts were investigated by DFT calculations. In-depth comparative analyses of pyrox-based and bipyridine-based Mn complexes were carried out. C-OH cleavage is the rate-determining step for both the protonation-first path and the reduction-first path. The free energy of CO2 activation (ΔG1) and the electrons donated by CO ligands in this step are effective descriptors in regulating the C-OH cleavage barrier. The reduction of carboxylate complex 6 (E6) is the potential-determining step for the reduction-first path. Meanwhile, for the protonation-first path, the initial generation (E2) or the regeneration (E8) of active catalyst might be potential-determining. Hirshfeld charge and orbital contribution analysis indicate that E6 is definitely based on the heterocyclic ligand and E2 is related to both the heterocyclic ligand and three CO ligands. Therefore, replacement of the CO ligand by a stronger electron donating ligand can effectively boost the catalytic activity of CO2 reduction without increasing the overpotential in the reduction-first path. This hypothesis is supported by the mechanism calculations of the Mn complex in which the axial CO ligand is replaced by a pyridine or PMe3.

4.
Angew Chem Int Ed Engl ; 62(35): e202307808, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37439263

RESUMEN

The accelerated kinetic behaviour of charge carrier transfer and its unhindered surface reaction dynamic process involving oxygenated-intermediate activation and conversion are urgently required in photocatalytic water (H2 O) overall splitting, which has not been nevertheless resolved yet. Herein, localized CdS homojunctions with optimal collocation of high and low index facets to regulate d-band center for chemically adsorbing and activating key intermediates (*-OH and *-O) have been achieved in H2 O overall splitting into hydrogen. Density functional theory, hall effect, and in situ diffuse reflectance infrared Fourier transform spectroscopy confirm that, electrons and holes are kinetically transferred to reductive high index facet (002) and oxidative low index facet (110) of the localized CdS homojunction induced by facet Fermi level difference to dehydrogenate *-OH and couple *-O for hydrogen and oxygen evolution, respectively, along with a solar conversion into hydrogen (STH) of 2.20 % by Air Mass 1.5 Global filter irradiation. These findings contribute to solving the kinetic bottleneck issues of photocatalytic H2 O splitting, which will further enhance STH.

5.
Polymers (Basel) ; 15(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177363

RESUMEN

In order to study the failure mode and debonding behavior of the interface between BFRP (basalt fiber reinforced polymer) sheet and structural steel under mixed-mode loading conditions, eighteen specimens with different initial angles were tested in this study. The specimens were designed with different initial angles to ensure that the interface performed under mixed-mode loading conditions. The relations between the bond strengths, failure modes, and initial angles were investigated. A new evaluation method to predict the interfacial bond strength under shear-peeling loading mode was proposed. The test results show that specimens with a smaller initial angle are more likely to exhibit a shear debonding failure at the interface between the steel plate and adhesive. In contrast, specimens with a larger initial angle are more likely to exhibit peeling of the interface. The ultimate tensile strength of the specimen is higher with a smaller initial angle. The results predicted by the proposed method are in good agreement with the experimental results.

6.
J Colloid Interface Sci ; 635: 305-315, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36587582

RESUMEN

The main goal of researchers is to obtain cheap cocatalysts that can promote the photocatalytic activity of catalysts. In this work, a series of CoS2/g-C3N4 (denoted as CoS2/CN) composite photocatalysts were synthesized by photodepositing CoS2 on g-C3N4 surface. The size of CoS2 species could be tuned from single-atom to nanometer scale, which had effect on photocatalysis. The 5CoS2/CN sample with proper nano size of CoS2 cocatalyst had the best photocatalytic performance (1707.19 µmol g-1h-1) in producing H2 under visible light irradiation (λ > 420 nm). Its photocatalytic activity was about 1434.6 times higher than that of pure g-C3N4 and almost equal with that of Pt/CN catalyst (1799.54 µmol g-1h-1). The Density Functional Theory (DFT) calculation results further suggested that the ability of accumulating the electrons of the cocatalyst was based on the size effect of CoS2, and the proper size of the cocatalyst efficiently promoted the separation of photogenerated electron-hole pairs.

7.
Rev Sci Instrum ; 93(11): 115106, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461434

RESUMEN

To solve the problem of low quality rate for one-time assembly of high-pressure compressors, an improved genetic algorithm (GA) is used to adjust and optimize the imbalance after assembly. This paper takes the post-assembly imbalance of a multi-stage rotor of a high-pressure compressor as the objective function, to reduce the post-assembly imbalance by adjusting the arrangement order of rotor blades and the assembly phase between rotors. We used a four-sector staggered distribution method to generate high-quality initial populations and added an elite retention strategy. The crossover and mutation probabilities are adaptively adjusted according to the fitness function values. The threshold termination condition is added to make the algorithm converge quickly so as to achieve fast, stable, and efficient search. The simulation results show that the imbalance is reduced by 99.46% by using the improved genetic algorithm, which is better than the traditional GA. The experimental results show that the imbalance of the two correction surfaces can be reduced to 640 and 760 g·mm, respectively, which is 86.7% and 87.1% better than the zero-degree assembly.

8.
Rev Sci Instrum ; 93(11): 115108, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461514

RESUMEN

When implementing the traditional assembly method, the rotor is affected by machining errors. The morphology of the rotor is complex, and the machining error of the rotors at all levels are transmitted step by step through the stop mating surface, which affects the performance and service life of the aero-engine. The evaluation of machining error of single-stage rotor is the basis of assembly quality of multi-stage rotor. In order to improve the current situation of complicated and time-consuming rotor machining error evaluation, this paper proposes to establish a deep belief neural network (DBNN) to replace the traditional procedure of depolarization. The network takes the relative evaluation error of the rotor profile data without depolarization as the input and takes the machining error of the rotors obtained after depolarization as the output. First, the evaluation mechanism of the rotor's machining error is analyzed, and the corresponding machining error influence source is selected as the input source of the deep belief neural network. Second, as DBNN is trained, and the appropriate weight initialization method and the optimization algorithm of the prediction network are selected to ensure the optimization of the whole network for feature mapping extraction of the training set. Finally, the assembly of multi-stage rotors is simulated and analyzed. It is shown in the experiments that after the iteration, the prediction network, with good training effects, has converged, and its prediction results tend to be consistent with the real values. The mean prediction error of the concentricity is 0.09 µm while the mean difference of angle of concentricity error value is 0.77°, and the mean difference of perpendicularity error value is 0.21 µm while the mean difference of angle of perpendicularity error value is 1.4°, the corresponding R2 determination coefficients were 0.99, 0.98, 0.91, and 0.94, respectively. It meets the requirements of field assembly and fully embodies the effectiveness of the procedure of depolarization based on deep confidence neural network.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
9.
Environ Sci Technol ; 56(22): 16325-16335, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283104

RESUMEN

Nitrous oxide (N2O) has gained increasing attention as an important noncarbon dioxide greenhouse gas, and catalytic decomposition is an effective method of reducing its emissions. Here, Co3O4 was synthesized by the sol-gel method and single-atom Pr was confined in its matrix to improve the N2O decomposition performance. It was observed that the reaction rate varied in a volcano-like pattern with the amount of doped Pr. A N2O decomposition reaction rate 5-7.5 times greater than that of pure Co3O4 is achieved on the catalyst with a Pr/Co molar ratio of 0.06:1, and further Pr doping reduced the activity due to PrOx cluster formation. Combined with X-ray photoelectron spectroscopy, X-ray absorption fine structure, density functional theory and in situ near-ambient pressure X-ray photoelectron spectroscopy, it was demonstrated that the single-atom doped Pr in Co3O4 generates the "Pr 4f-O 2p-Co 3d" network, which redistributes the electrons in Co3O4 lattice and increases the t2g electrons at the tetracoordinated Co2+ sites. This coupling between the Pr 4f orbit and Co2+ 3d orbit triggers the formation of a 4f-3d electronic ladder, which accelerates the electron transfer from Co2+ to the 3π* antibonding orbital of N2O, thus contributing to the N-O bond cleavage. Moreover, the energy barrier for each elementary reaction in the decomposition process of N2O is reduced, especially for O2 desorption. Our work provides a theoretical grounding and reference for designing atomically modified catalysts for N2O decomposition.

10.
Inorg Chem ; 61(45): 18033-18043, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36315847

RESUMEN

A novel mechanism of organobase-mediated Brook rearrangement and C-C coupling in the copper-catalyzed reductive coupling of benzaldehyde and benzophenone is proposed. The results demonstrate that this reaction proceeds mainly through five sequential elementary steps: transmetalation, carbonyl addition, σ-bond metathesis, Brook rearrangement, and C-C coupling. The organobases played a significant role not only in forming the active catalyst but also in mediating the Brook rearrangement and chemoselectivity in homo- and cross-coupling. Brook rearrangement mediated by organobases is more favored than that without organobases. In the C-C coupling step, the cation bridge combines two O atoms with the same electronegativity to form a pre-reaction complex. Moreover, a significant charge difference is a major factor in the selectivity of carbonyl addition and C-C coupling.


Asunto(s)
Benzaldehídos , Cobre , Catálisis , Benzofenonas , Cationes
11.
Environ Sci Technol ; 56(14): 10442-10453, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35749227

RESUMEN

A single-atom Ce-modified α-Fe2O3 catalyst (Fe0.93Ce0.07Ox catalyst with 7% atomic percentage of Ce) was synthesized by a citric acid-assisted sol-gel method, which exhibited excellent performance for selective catalytic reduction of NOx with NH3 (NH3-SCR) over a wide operating temperature window. Remarkably, it maintained ∼93% NO conversion efficiency for 168 h in the presence of 200 ppm SO2 and 5 vol % H2O at 250 °C. The structural characterizations suggested that the introduction of Ce leads to the generation of local Fe-O-Ce sites in the FeOx matrix. Furthermore, it is critical to maintain the atomic dispersion of the Ce species to maximize the amounts of Fe-O-Ce sites in the Ce-doped FeOx catalyst. The formation of CeO2 nanoparticles due to a high doping amount of Ce species leads to a decline in catalytic performance, indicating a size-dependent catalytic behavior. Density functional theory (DFT) calculation results indicate that the formation of oxygen vacancies in the Fe-O-Ce sites is more favorable than that in the Fe-O-Fe sites in the Ce-free α-Fe2O3 catalyst. The Fe-O-Ce sites can promote the oxidation of NO to NO2 on the Fe0.93Ce0.07Ox catalyst and further facilitate the reduction of NOx by NH3. In addition, the decomposition of NH4HSO4 can occur at lower temperatures on the Fe0.93Ce0.07Ox catalyst containing atomically dispersed Ce species than on the α-Fe2O3 reference catalyst, resulting in the good SO2/H2O resistance ability in the NH3-SCR reaction.

12.
Environ Sci Pollut Res Int ; 29(26): 39027-39040, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35098464

RESUMEN

Since the advent of photocatalytic degradation technology, it has brought new vitality to the environmental governance and the response to the energy crisis. Photocatalysts harvest optical energy to drive chemical reactions, which means people can use solar energy to complete some resource-consuming activities by photocatalysts, such as environmental governance. In recent years, researchers have tried to combine photocatalyst TiO2 with building materials to purify urban air and obtained good results. One of the important functions of photocatalysts is to degrade organic pollutants in water through light energy, but this technology has not been reported in the practical application areas. To extend this technology to practical application areas, photocatalytic concrete for degrading pollutants in waters was proposed and demonstrated for the first time in this paper. The photocatalytic concrete proposed based on the K-g-C3N4 shows a strong ability to degrade the organic dyes. According to the experiment results, the angle of light source plays an important role in the process of photocatalytic degradation, while waters with pH value of 6.5-8.5 hardly influenced the degradation of organic dyes. When the angle of light source is advantageous for photocatalytic concrete to absorb more visible light, more organic dyes will be degraded by photocatalytic concrete. The degradation rate of methylene blue could reach about 80% in ½ hour under desirable conditions and is satisfied compared with that of reported works. This study implicates that photocatalytic concrete can effectively degrade organic dyes in water. The influences of changes in the water environment hardly affect the degradation of organic pollutants, which means photocatalytic concrete can be widely used in green infrastructures to achieve urban sewage treatment.

13.
J Colloid Interface Sci ; 606(Pt 2): 1445-1456, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492479

RESUMEN

Hematite (α-Fe2O3) is a promising candidate for NH3 selective catalytic reduction (NH3-SCR) of NOx due to its good sulfur resistance. However, the activity of pure α-Fe2O3 is very low. In this work, α-Fe2O3 obtained excellent N2 selectivity and medium-high temperature activity via a simple surface sulfation method. The α-Fe2O3-350 (sulfated at 350 °C) sample showed an NO conversion rate of ~ 100% in the range of 275-350 °C and exhibited excellent H2O and SO2 resistance ability at 300 °C. Furthermore, pure α-Fe2O3 was used as a model catalyst to fully uncover the effect of sulfation on FeOx-based catalysts in NH3-SCR reactions. Structural characterization indicated that the degree of surface sulfation of the catalyst would be deepened with increasing temperature, and the states of sulfate species on α-Fe2O3 changed from surface sulfates to bulk-like sulfates. Although sulfation treatment reduced the redox properties of α-Fe2O3, it significantly increased its surface acidity and thus the activity. Excessive bulk-like sulfates induced a decrease in activity. Sulfation inhibited the adsorption of NOx on the α-Fe2O3 catalyst surface and reduced the thermal stability of nitrates at medium-high temperature. Thus, the Langmuir-Hinshelwood (L-H) mechanism was inhibited, and the reaction mainly followed the Eley-Rideal (E-R) mechanism.

14.
ACS Nano ; 15(11): 18006-18013, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34672539

RESUMEN

Low efficient transfer of photogenerated charge carriers to redox sites along with high surface reaction barrier is a bottleneck problem of photocatalytic H2O overall splitting. Here, in the absence of cocatalysts, H2O overall splitting has been achieved by single-atomic S vacancy hexagonal CdS with a spin polarization electric field (PEF). Theoretical and experimental results confirm that single-atomic S vacancy-induced spin PEF with opposite direction to the Coulomb field accelerates charge carrier transport dynamics from the bulk phase to surface-redox sites. By systematically tuning the spin PEF intensity with single-atomic S vacancy content, common pristine CdS is converted to a photocatalyst that can efficiently complete H2O overall splitting by releasing a great number of H2 bubbles under natural solar light. This work solves the bottleneck of solar energy conversion in essence by single atom vacancy engineering, which will promote significant photocatalytic performance enhancement for commercialization.

15.
Phys Chem Chem Phys ; 23(31): 16675-16689, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34337631

RESUMEN

CO2 hydrogenation into value-added chemicals not only offer an economically beneficial outlet but also help reduce the emission of greenhouse gases. Herein, the density functional theory (DFT) studies have been carried out on CO2 hydrogenation reaction for formamide production catalyzed by two different N-H ligand types of PNP iron catalysts. The results suggest that the whole mechanistic pathway has three parts: (i) precatalyst activation, (ii) hydrogenation of CO2 to generate formic acid (HCOOH), and (iii) amine thermal condensation to formamide with HCOOH. The lower turnover number (TON) of a bifunctional catalyst system in hydrogenating CO2 may attribute to the facile side-reaction between CO2 and bifunctional catalyst, which inhibits the generation of active species. Regarding the bifunctional catalyst system addressed in this work, we proposed a ligand participated mechanism due to the low pKa of the ligand N-H functional in the associated stage in the catalytic cycle. Remarkably, catalysts without the N-H ligand exhibit the significant transfer hydrogenation through the metal centered mechanism. Due to the excellent catalytic nature of the N-H ligand methylated catalyst, the N-H bond was not necessary for stabilizing the intermediate. Therefore, we confirmed that N-H ligand methylated catalysts allow for an efficient CO2 hydrogenation reaction compared to the bifunctional catalysts. Furthermore, the influence of Lewis acid and strong base on catalytic N-formylation were considered. Both significantly impact the catalytic performance. Moreover, the catalytic activity of PNMeP-based Mn, Fe and Ru complexes for CO2 hydrogenation to formamides was explored as well. The energetic span of Fe and Mn catalysts are much closer to the precious metal Ru, which indicates that such non-precious metal catalysts have potentially valuable applications.

16.
ACS Nano ; 15(4): 7208-7215, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33871961

RESUMEN

A g-C3N4 allotrope, a curved leaf-like graphitic C2N3 (g-C2N3) with an intrinsic spontaneous polarization electric field (ISPEF), has been constructed for efficient solar energy conversion into H2 energy via photocatalytic H2O splitting. The curved leaf-like π-delocalization g-C2N3 was composed of aromatic azide pentagons and normal triazine hexagons obtained by cycloaddition between -C≡N groups from dicyandiamide polymerization and azide from the heat-treated polypyrrole fibers. Under light irradiation (λ > 420 nm), photo-generated charges are driven to separate efficiently and transfer from bulk to active sites of the surface under ISPEF that is opposite to the Coulomb field. Consequently, without any cocatalyst, g-C3N4 allotrope demonstrates a very high H2-production activity of 14.9 mmol g-1 h-1 accompanied by a lot of H2 bubbles, which is 2.6 times of g-C3N4 loading with Pt. In comparison with the reported metal-free photocatalysts or those supported with noble metals, g-C3N4 allotrope (i.e., leaf-like g-C2N3) is confirmed to be the best metal-free photocatalyst for H2O splitting into H2 fuel so far. The contructed leaf-like g-C2N3 with SPEF supplies a suitable platform for solar energy conversion into H2 fuel, which actively contributes to clean energy production.

17.
J Colloid Interface Sci ; 581(Pt A): 427-441, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777626

RESUMEN

In recent years, Fe-based catalysts for the selective catalytic reduction of NO with NH3 (NH3-SCR) have been attracting more attention. In this work, a novel Fe-Sb binary metal oxide catalyst was synthesized using the ethylene glycol assisted co-precipitation method and was characterized using a series of techniques. It was found that the catalyst with a molar ratio of 7:3 (Fe:Sb) displayed the best NH3-SCR activity with 100% conversion of NOx (nitrogen oxides) over a wide temperature window and with good resistance to H2O + SO2 at 250 °C. The X-ray photoelectron spectroscopy (XPS) and in situ diffused reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) of NOx adsorption results suggested that strong electron interactions between Fe and Sb in Fe-O-Sb species existed and electrons of Sb could be transferred to Fe through the 2Fe3+ + Sb3+ ↔ 2Fe2+ + Sb5+ redox cycle. The introduction of Sb significantly improved the adsorption behaviour of NOx species on the Fe0.7Sb0.3Ox surface, which benefitted the adsorption/transformation of NOx, thereby facilitating the NH3-SCR reaction. In addition, the Fe0.7Sb0.3Ox catalyst demonstrated a good tolerance of H2O and SO2, since the decomposition of NH4HSO4 on the catalyst surface was promoted by the introduction of Sb.

18.
Chemosphere ; 266: 128929, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33199111

RESUMEN

The wide use and distribution of sulpiride (SP) has caused potential threats to the water environment and human health. In this study, ultrathin S-doped graphitic carbon nitride nanosheets (US-CN) was successfully synthesized and characterized, and its SP removal efficiency was evaluated under various conditions via the visible-light-assisted peroxydisulfate (PDS) activation method. The degradation pathways and mechanism were also discussed through quenching experiments, density functional theory (DFT) calculations, and intermediate products detection. After sulfur doping and ultrasonic treatment, graphitic carbon nitride (CN) possessed an ultra-thin and porous structure, which facilitated the electronic distribution and more photocurrent, thus resulting in the excellent stability and removal efficiency for SP via PDS activation upon visible light irradiation. The singlet oxygen (1O2) generated by the US-CN/PDS/VL system played a significant role in SP degradation. Based on the bonds of electron-rich atoms fracturing and the SO2 extrusion, the SP degradation pathway was proposed. This work provides a useful information for the SP photocatalytic degradation via PDS activation.


Asunto(s)
Grafito , Sulpirida , Catálisis , Humanos , Luz , Compuestos de Nitrógeno
19.
Environ Sci Technol ; 54(23): 15476-15488, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33156618

RESUMEN

Industrialization has resulted in the rapid increase of volatile organic compound (VOC) emissions, which have caused serious issues to human health and the environment. In this study, an extensive Cu incorporating TiO2 induced nucleophilic oxygen structure was constructed in the CuTiOx catalyst, which exhibited superior low-temperature catalytic activity for C3H6 combustion. Thorough structural, surface characterization and density functional theory (DFT) calculations revealed that the Cu-O-Ti hybridization induced nucleophilic oxygen initiates C3H6 combustion by abstracting the C-H bond. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results indicated that incorporated copper species acted as the major adsorbent site for the propene molecule. In combination of the DRIFTS and DFT results, the promotion effect of the nucleophilic O on the C-H bond abstraction and CO2 formation pathway was proposed. The surface doping induced nucleophilic oxygen as strong Brønsted basic sites for low-temperature propene combustion exemplified an efficient strategy for rational design of next-generation environmental catalysts.


Asunto(s)
Especies Reactivas de Oxígeno , Alquenos , Catálisis , Humanos , Oxidación-Reducción , Temperatura
20.
Sensors (Basel) ; 20(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050092

RESUMEN

The accurate measurement of stress at different depths in the end face of a high-pressure compressor rotor is particularly important, as it is directly related to the assembly quality and overall performance of aero-engines. The ultrasonic longitudinal critically refracted (LCR) wave is sensitive to stress and can measure stress at different depths, which has a prominent advantage in stress non-destructive measurements. In order to accurately characterize the propagation depth of LCR waves and improve the spatial resolution of stress measurement, a finite element model suitable for the study of LCR wave propagation depths was established based on a wave equation and Snell law, and the generation and propagation process of LCR waves are analyzed. By analyzing the blocking effect of grooves with different depths on the wave, the propagation depth of the LCR wave at seven specific frequencies was determined in turn. On this basis, the LCR wave propagation depth model is established, and the effects of wedge materials, piezoelectric element diameters, and excitation voltages on the propagation depth of LCR waves are discussed. This study is of great significance to improve the spatial resolution of stress measurements at different depths in the end face of the aero-engine rotor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...