Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 4(3): e1020, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38529787

RESUMEN

Flow cytometry stands as the most employed high-throughput single-cell analysis technique, facilitating the profiling of remarkably diverse samples, such as blood, bone marrow and body fluids. In addition, it allows for the discrimination of diverse immune cell subsets, including infrequently encountered types like T regulatory cells and exhausted CD28Null T cells. However, analyzing rare immune cell subsets with conventional flow cytometry poses challenges stemming from factors like fluorophore overlap, compensation issues, and limited flexibility in fluorophore selection. Therefore, spectral flow cytometry offers advantages over traditional flow cytometry. It measures the full emission spectrum and then separates it to identify different fluorochromes. This enables the use of fluorochromes with significant overlap in a single test, allowing for the analysis of more protein markers. Following this, spectral technology employs precise calculations to separate individual fluorochromes, thereby enabling the detection and elimination of autofluorescent signals originating from cells within the entire emission spectrum. This capability is pivotal in achieving deep phenotyping of immune cells with the requisite sensitivity and resolution essential for monitoring the immune systems of patients with compromised immunity, such as cancer and autoimmune disorders. Additionally, it allows for the exploration of interactions between distinct immune subsets. In this context, we introduce an optimized protocol utilizing spectral flow cytometry for precise T-cell characterization and differentiation, encompassing the assessment of their activation states. Furthermore, this protocol extends its applicability to the identification of less common circulating T-cell populations, notably T-regulatory and CD28Null T cells, following autofluorescence correction within the spectrum. This protocol provides a set of steps and reagents for the surface and intracellular staining of human T cells using whole peripheral blood. The spectral-based design of this panel allows for its applicability to other spectral machines, providing a versatile and efficient tool for T-cell analysis. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Achieving optimal staining through effective antibody titration Basic Protocol 2: Single-cell staining Basic Protocol 3: Comprehensive panel staining post-titration and spectral library integration.


Asunto(s)
Colorantes Fluorescentes , Linfocitos T , Humanos , Citometría de Flujo/métodos , Antígenos CD28
2.
Elife ; 122023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773612

RESUMEN

Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Quimiotaxis de Leucocito , Inmunidad Innata , Neutrófilos , Infecciones Estafilocócicas/microbiología
3.
Front Oral Health ; 4: 1233881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670806

RESUMEN

Background: The periodontium is a highly vascularized area of the mouth, and periodontitis initiates negative functional and structural changes in the vasculature. However, mild oral inflammation, including levels experienced by many apparently healthy individuals, has an unclear impact on cardiovascular function. The purpose of this pilot study is to investigate the effects of objectively measured whole mouth oral inflammatory load (OIL) on vascular function in apparently healthy individuals. Methods: In this cross-sectional and correlational analysis, we recruited 28 young (18-30 years) and systemically healthy participants (16 male, 12 female). Using oral neutrophil counts, a validated measure for OIL, we collected participant's mouth rinse samples and quantified OIL. Blood pressure, arterial stiffness (pulse-wave velocity) and endothelial function (brachial artery flow-mediated dilation) were also measured. Results: Only oral neutrophil count significantly predicted flow-mediated dilation % (p = 0.04; R2 = 0.16, ß = - 1.05) and those with OIL levels associated with >2.5 × 105 neutrophil counts (n = 8) had a lower flow-mediated dilation % (6.0 ± 2.3%) than those with counts associated with gingival health with less than 2.5 × 105 neutrophil counts (10.0 ± 5.2%, p = 0.05). There were no significant predictors for arterial stiffness. Conclusion: We found that OIL was a predictor of reduced flow-mediated dilation. An impairment in flow-mediated dilation is an indicator of future possible risk of cardiovascular disease-one of the leading causes of death in North America. Therefore, this study provides evidence for the importance of oral health and that OIL may impact endothelial function.

4.
Clin Infect Dis ; 77(5): 752-760, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37157867

RESUMEN

BACKGROUND: Bloodstream infections (BSIs) are the most common infectious complication in patients who receive allogeneic hematopoietic stem-cell transplants (allo-HSCTs). Polymorphonuclear neutrophils (PMNs) are quantified to monitor the susceptibility to BSIs; however, their degree of activation is not. We previously identified a population of primed PMNs (pPMNs) with distinct markers of activation representing approximately 10% of PMNs in circulation. In this study, we investigate whether susceptibility to BSIs is related to the proportion of pPMNs rather than strictly PMN counts. METHODS: In this prospective observational study, we used flow cytometry to assess pPMNs in blood and oral rinse samples collected from patients receiving an allo-HSCT over the course of their treatment. We used the proportion of pPMNs in the blood on day 5 post-transplant to categorize patients into a high- or a low-pPMN group (>10% or <10% pPMNs). These groups were then used as a predictor of BSIs. RESULTS: A total of 76 patients were enrolled in the study with 36 in the high-pPMN group and 40 in the low-pPMN group. Patients in the low-pPMN group had lower expression of PMN activation and recruitment markers and displayed a delay in PMN repopulation of the oral cavity after the transplant. These patients were more susceptible to BSIs compared with patients in the high-pPMN group with an odds ratio of 6.5 (95% confidence interval, 2.110-25.07; P = .002). CONCLUSIONS: In patients who receive an allo-HSCT, having <10% pPMNs early in the post-transplant phase can be an independent predictor of BSI in allo-HSCT patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Sepsis , Humanos , Neutrófilos , Estudios Prospectivos , Estudios Retrospectivos , Sepsis/epidemiología , Sepsis/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos
5.
Proc Natl Acad Sci U S A ; 120(22): e2219392120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216534

RESUMEN

Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.


Asunto(s)
Bacteriocinas , Humanos , Bacteriocinas/farmacología , Bacteriocinas/química , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Péptidos
6.
Cells ; 11(24)2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36552874

RESUMEN

This prospective cohort study aimed to investigate the impact of maternal oral inflammation on human milk composition including neutrophil counts, activation state (based on cluster of differentiation (CD) markers expression), and fatty acid levels. Fifty mothers were recruited from St. Michael's hospital, Toronto, and followed up from 2-4 weeks until 4 months postpartum. Oral rinse and human milk samples were collected at both timepoints. Oral polymorphonuclear neutrophils (oPMNs) within the rinses were quantified using flow cytometry and the participants' oral health state was categorized into three groups (i.e., healthy, moderate, and severe) based on the oPMNs counts. Fatty acids were identified and quantified using a gas chromatography-flame ionization detector (GC-FID). Compared to mothers with a healthy oral health state, mothers with moderate to severe oral inflammation had a statistically significant decrease in the expression of CD64 biomarker, an increase in the expression of CD14 biomarker on human milk neutrophils and a decrease in the levels of eicosapentaenoic acid (C20:5n-3) in their human milk at follow-up compared to baseline. This study demonstrates for the first time that maternal oral inflammation can affect human milk composition. The mechanism by which these alterations can affect infant health outcomes in the long term critically needs to be considered.


Asunto(s)
Leche Humana , Neutrófilos , Lactante , Femenino , Humanos , Neutrófilos/metabolismo , Leche Humana/metabolismo , Estudios Prospectivos , Ácidos Grasos Insaturados/metabolismo , Fenotipo , Biomarcadores/metabolismo , Inflamación/metabolismo
7.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076990

RESUMEN

Neutrophils, also known as polymorphonuclear leukocytes (PMNs), form a significant component of the innate host response, and the consequence of the interaction between the oral microbiota and PMNs is a crucial determinant of oral health status. The impact of radiation therapy (RT) for head and neck tumour (HNT) treatment on the oral innate immune system, neutrophils in particular, and the oral microbiome has not been thoroughly investigated. Therefore, the objective of this study was to characterize RT-mediated changes in oral neutrophils (oPMNs) and the oral microbiome in patients undergoing RT to treat HNTs. Oral rinse samples were collected prior to, during and post-RT from HNT patients receiving RT at Dental Oncology at Princess Margaret Cancer Centre. The oPMNs counts and activation states were analysed using flow cytometry, and the oral microbiome was analysed using 16S rRNA gene sequencing. Statistically significant (p < 0.05) drops in oPMN counts and the activation states of the CD11b, CD16, CD18, CD64 and H3Cit markers from pre-RT to post-RT were observed. Moreover, exposure to RT caused a significant reduction in the relative abundance of commensal Gram-negative bacteria and increased the commensal Gram-positive microbes. Ionizing radiation for the treatment of HNTs simultaneously decreased the recruitment of oPMNs into the oral cavity and suppressed their activation state. The oral microbiome composition post-RT was altered significantly due to RT which may favour the colonization of specific microbial communities unfavourable for the long-term development of a balanced oral microbiome.


Asunto(s)
Neoplasias de Cabeza y Cuello , Microbiota , Radioterapia de Intensidad Modulada , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Inmunidad Innata , Estudios Prospectivos , ARN Ribosómico 16S/genética , Radioterapia
8.
Front Oral Health ; 3: 933997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105174

RESUMEN

Background and objectives: Periodontitis affects the supporting structures of the teeth as a result of the interactions between the subgingival biofilm and the host immune system. Periodontal therapy in severe forms of periodontitis often utilizes antimicrobial agents with some potential to improve host defense responses. In the present study, we investigated the in vitro effect of metronidazole (MTZ) at concentrations achievable in the periodontal pocket on PMN activation and PMN mediated killing of Porphyromonas gingivalis. Materials and methods: Flow cytometry based assays were used to measure the impact of MTZ on PMN degranulation, neutrophil extracellular trap (NET) formation and myeloperoxidase (MPO) release and phagocytosis in response to the keystone oral pathogen P. gingivalis. Functional assays for PMN mediated killing of P. gingivalis and reactive oxygen species (ROS) production in PMN were also carried out. Results: We demonstrate that PMNs pretreated with MTZ (2 µg/ml or 50 µg/ml) displayed enhanced killing of P. gingivalis compared to untreated PMNs. At concentrations achieved physiologically in the periodontal pocket, MTZ induced PMN surface expression of two activation markers (CD66 and CD63). MTZ did not alter P. gingivalis-induced NETosis, but suppressed P. gingivalis-induced ROS production and phagocytosis. Conclusion: MTZ displays a positive interaction with PMNs to potentiate PMN mediated killing of P. gingivalis and may therefore contribute to its beneficial effects in the treatment of periodontitis initiated by P. gingivalis infections including those refractory to conventional treatment.

9.
Cytoskeleton (Hoboken) ; 78(5): 206-213, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34370397

RESUMEN

Through the process of chemotactic migration, neutrophils are able to recruit to an inflammatory site and eliminate pathogens, thus playing a vital role in host defense. The process of neutrophil chemotaxis is mediated by dynamic actin reorganization and polymerization. Adseverin, an actin-binding protein and member of the Gelsolin superfamily of proteins, has been hypothesized to regulate goal directed movement through the capping and severing of actin filaments, but has never been investigated in the context of neutrophil chemotaxis. Using an Adseverin knockout mouse model, we show that Adseverin plays a role in subcortical F-actin assembly at the leading edge during chemotaxis through the generation of free barbed ends on existing actin filaments. In addition, in the absence of Adseverin, neutrophils show reduced speed of migration in vitro and in vivo. This study indicates that Adseverin is a regulator of actin filament generation during neutrophil chemotaxis.


Asunto(s)
Gelsolina , Proteínas de Microfilamentos , Actinas/metabolismo , Animales , Ratones , Proteínas de Microfilamentos/metabolismo , Neutrófilos/metabolismo
10.
ACS Pharmacol Transl Sci ; 4(2): 908-925, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860210

RESUMEN

A series of bone-targeting EP4 receptor agonist conjugate prodrugs were prepared wherein a potent EP4 receptor agonist was bound to a biologically inactive, bisphosphonate-based bone-targeting moiety. Singly and doubly radiolabeled conjugates were synthesized and were shown to be stable in blood, to be rapidly eliminated from the bloodstream, and to be effectively taken up into bone in vivo after intravenous dosing. From these preliminary studies a preferred conjugate 4 (also known as C3 and Mes-1007) was selected for follow up biodistribution and elimination studies. Doubly radiolabeled conjugate 4 was found to partition largely to the liver and bones, and both labels were eliminated from liver at the same rate indicating the conjugate was eliminated intact. Quantification of the labels in bones indicated that free EP4 agonist (EP4a)(2a) was released from bone-bound 4 with a half-time of about 7 days. When dosed orally, radiolabeled 4 was not absorbed and passed through the gastrointestinal tract essentially unchanged, and only traces of radiolabeled 4 were found in the liver, blood, or bones. 4 was found to bind rapidly and completely to powdered bone mineral or to various forms of calcium phosphate, forming a stable matrix suitable for implant and that could made into powders or solid forms and be sterilized without decomposition or release of 4. Basic hydrolysis released free EP4 agonist 2a quantitatively from the material.

11.
J Leukoc Biol ; 110(1): 187-195, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33145850

RESUMEN

Neutrophils are quickly recruited to tissues in response to proinflammatory cues; however, little is known about tissue neutrophil phenotypes in health. We employ a multicolor flow cytometric approach to assess surface markers of activation on neutrophils from the bone marrow, blood, peritoneum, spleen, liver, fat, colon, and oral cavity of healthy mice. Cell preparations were promptly fixed to preserve native surface marker expression levels. Peritoneal, colonic, and oral neutrophils were also assessed in the setting of pHrodo-induced peritonitis, dextran sodium sulfate-induced colitis, and ligature-induced periodontal disease, respectively. Our results demonstrate consistent detectable neutrophil populations in various sterile and nonsterile tissues of healthy mice, and these cells had tissue-specific neutrophil immunophenotypes. Neutrophils derived from biofilm-associated mucosal tissues had 2- to 3-fold higher expression of surface markers of activation, including CD66a, CD11b, and CD62L, compared to neutrophils derived from both sterile healthy tissues as well as tissues in animals treated with broad-spectrum antibiotics. Furthermore, the unique cluster of differentiation (CD) marker activation signatures of tissue-specific neutrophils from the peritoneum, colon, and oral cavity were altered to a proinflammatory immunophenotype with the presence of an inflammatory stimulus. Based on our results, we propose a model whereby a hierarchy of tissue neutrophil immunophenotypes, based on the differential expression of CD markers of activation, correlates with sterile, healthy commensal biofilm-associated and inflamed tissue states.


Asunto(s)
Homeostasis , Inflamación/etiología , Inflamación/metabolismo , Activación Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Antígenos CD/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Inmunofenotipificación , Inflamación/diagnóstico , Ratones , Especificidad de Órganos
12.
Eur J Pharmacol ; 889: 173613, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007291

RESUMEN

AP-002 is a novel, gallium-based, anti-cancer oral compound in clinical development for cancer patients with bone metastases. We examined the effects of AP-002 on osteoclastogenesis, fusion, and osteogenesis. AP-002 exhibited a dramatic effect on osteoclast function without causing osteoclast cell death. The expression of tartrate-resistant acid phosphatase and cathepsin K mRNA levels was down-regulated in RAW264.7 cells treated with AP-002 in the presence of soluble receptor activator of NF-κB ligand. AP-002 was also found to block the fusion of osteoclasts from RAW264.7 cells. AP-002 had a similar inhibitory effect on RANKL-induced mouse primary bone marrow monocytes fusion. Human blood monocytes treated with AP-002 failed to form TRAcP/ACP5-positive cells. AP-002 caused these inhibitory effects without causing osteoclast cell death, which was in contrast to zoledronic acid controls. Furthermore, unlike zoledronic acid, AP-002 did not inhibit Rac1 activation. Gene expression analysis by microarrays showed that AP-002 significantly reverses the effects of RANKL-induced gene expression. These include several key osteoclast-differentiation/function-associated genes such as: Scinderin, OCSTAMP, Atp6v0d2, OSCAR, RhoU, Usp18, MMP9, and Trim30. The difference between AP-002 and zoledronic acid is also seen in its effects on osteogenesis. Osteoblast mineralization was promoted by AP-002 (0.1-3.0 µM), whereas zoledronic acid showed toxicity to osteoblasts at the concentration >0.5 µM, in the same dose range where it causes osteoclast cell death. Zoledronic acid therefore has no therapeutic window in its toxic effect on osteoclasts and osteoblasts. AP-002 promotes osteogenesis in this therapeutic window, while blocking osteoclast development. We therefore conclude that AP-002 has potential as a new anti-bone resorption agent, with a mechanism of action different compared with other currently marketed anti-bone resorption agents.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Diferenciación Celular/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Animales , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/patología , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Endogámicos C57BL , Osteoclastos/fisiología , Osteogénesis/fisiología , Células RAW 264.7
13.
Sci Rep ; 10(1): 18309, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110111

RESUMEN

The pathogenesis of medication-related osteonecrosis of the jaw (MRONJ), a morbid condition associated with bisphosphonate administration, has not been fully elucidated. Recent research utilizing a murine model has revealed that the neutrophil becomes dysfunctional following exposure to bisphosphonates. Accordingly, the impairment of neutrophil function could play an important role in the pathogenesis of MRONJ via an infectious mechanism mediated by the suppression of the innate immune system. Currently, the existing human data are insufficient to substantiate this theory. To investigate, we isolated neutrophils from blood and oral rinse samples from bisphosphonate-naïve patients who were recently diagnosed with multiple myeloma both prior to and one month following their initial infusion of pamidronate, an intravenous bisphosphonate agent. Stimulated blood and oral neutrophil superoxide production and chemotactic capabilities were found to be impaired relative to baseline values. These results suggest that impaired neutrophil function may partially contribute to the aetiology underlying the pathophysiological processes linked to the development of MRONJ. Further, as the functional status of circulating neutrophils was reflected in the oral cavity where sampling can be accomplished in a non-invasive fashion, it is conceivable that neutrophil function could serve as a potential biomarker for MRONJ prognostication.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Pamidronato/farmacología , Estallido Respiratorio/efectos de los fármacos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Acta Biomater ; 117: 283-293, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32950724

RESUMEN

Neutrophils, cells of the innate immune system, enter the mouth and release factors that are hypothesized to contribute to the degradation of tooth dentin, methacrylate resin composites, and adhesives at the restoration-tooth-dentin interface. The objectives were to characterize neutrophils' degradation towards resin composite, self-etch (SE) and total-etch (TE) adhesives, SE and TE resin-dentin interfaces and to identify proteins that could contribute to the degradation process. Neutrophils' degradation of cured resin composite, and SE and TE adhesives, was quantified by measuring the specific resin degradation by-product, bishydroxy-propoxy-phenyl-propane (bisHPPP), released after 30 days incubation of the materials with the cells. Neutrophils' degradative effect on resin-dentin interfaces was examined by recording the interfacial fracture toughness (FT), and surface analysis of the fracture mode following incubation of SE and TE miniature short-rod (mini-SR) specimens with the cells. Neutrophils increased degradation of polymerized resin composite, and TE adhesive, but not SE adhesive over 30 days (p < 0.05). Incubation of SE and TE resin-dentin interfaces with neutrophils led to a reduction in FT over time (p < 0.05). The effect was more pronounced for TE interfaces. Neutrophils also affected the fracture mode of SE and TE resin-dentin interfaces. Several proteins that could contribute to the degradative activity of neutrophils, including Neutrophil collagenase (MMP-8), Matrix metalloproteinase- 9 (MMP-9), Cathepsin G, Neutrophil- gelatinase associated lipocalin (NGAL) and Myeloperoxidase, were isolated. The ability of neutrophils to degrade resin, tooth dentin, and reduce the bond strength of resin-dentin interfaces suggest neutrophils' potential role in primary and recurrent caries and dental restoration failure.


Asunto(s)
Recubrimiento Dental Adhesivo , Diente , Resinas Compuestas , Dentina , Recubrimientos Dentinarios , Humanos , Ensayo de Materiales , Metacrilatos , Neutrófilos , Cementos de Resina , Resistencia a la Tracción
15.
Mol Cell Proteomics ; 19(3): 501-517, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31879271

RESUMEN

Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFκB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.


Asunto(s)
Diabetes Mellitus Tipo 1/orina , Péptidos/orina , Uromodulina/orina , Adolescente , Línea Celular , Quimiotaxis de Leucocito/efectos de los fármacos , Citocinas/orina , Células Epiteliales/metabolismo , Femenino , Humanos , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Péptidos/farmacología , Proteómica , Uromodulina/farmacología
16.
Sci Adv ; 5(5): eaav7999, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31149635

RESUMEN

The mitochondrial antiviral signaling protein (MAVS) orchestrates host antiviral innate immune response to RNA virus infection. However, how MAVS signaling is controlled to eradicate virus while preventing self-destructive inflammation remains obscure. Here, we show that protein geranylgeranylation, a posttranslational lipid modification of proteins, limits MAVS-mediated immune signaling by targeting Rho family small guanosine triphosphatase Rac1 into the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) at the mitochondria-ER junction. Protein geranylgeranylation and subsequent palmitoylation promote Rac1 translocation into MAMs upon viral infection. MAM-localized Rac1 limits MAVS' interaction with E3 ligase Trim31 and hence inhibits MAVS ubiquitination, aggregation, and activation. Rac1 also facilitates the recruitment of caspase-8 and cFLIPL to the MAVS signalosome and the subsequent cleavage of Ripk1 that terminates MAVS signaling. Consistently, mice with myeloid deficiency of protein geranylgeranylation showed improved survival upon influenza A virus infection. Our work revealed a critical role of protein geranylgeranylation in regulating antiviral innate immune response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad Innata/fisiología , Neuropéptidos/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Prenilación de Proteína/inmunología , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Masculino , Ratones Noqueados , Neuropéptidos/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/mortalidad , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína RCA2 de Unión a GTP
17.
Blood Adv ; 3(10): 1622-1637, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138591

RESUMEN

Polymorphonuclear neutrophils (PMNs) are the most abundant circulating leukocytes, and the first cells recruited to sites of tissue inflammation. Using a fixation method to preserve native CD marker expression prior to immunophenotyping, we identified a distinct population of "primed for recruitment" PMNs in healthy mouse and human blood that has high expression of adhesion and activation markers compared with the bulk resting-state PMNs. In response to acute tissue inflammation, primed PMNs (pPMNs) were rapidly depleted from the circulation and recruited to the tissue. One hour after acute peritoneal insult, pPMNs became the dominant PMN population in bone marrow (BM) and blood, returning to baseline levels with resolution of inflammation. PMN priming was induced by the granulopoietic factors granulocyte-macrophage-colony-stimulating factor (GM-CSF) and granulocyte-colony-stimulating factor (G-CSF). High levels of pPMNs were observed in neutropenic mice and in pediatric neutropenic patients who were resistant to infection, highlighting an important role of this population in innate immune function.


Asunto(s)
Neutrófilos/metabolismo , Adolescente , Adulto , Animales , Voluntarios Sanos , Humanos , Ratones , Adulto Joven
18.
Acta Biomater ; 88: 325-331, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30807874

RESUMEN

Cholesterol esterase-like (CE) activity from saliva and esterase from cariogenic bacteria hydrolyze ester linkages of dental methacrylate resins. Collagenolytic, matrix metalloproteinase-like (MMP) activities from dentin and bacteria degrade collagen in demineralized tooth dentin. Human neutrophils in the oral cavity contain factors that are hypothesized to have CE and MMP activities that could contribute to the degradation of methacrylate resins and dentinal collagen. OBJECTIVES: To measure the CE and MMP activities from human neutrophils and their ability to degrade dental methacrylate resin composite and dentinal collagen. Neutrophils' CE and MMP activities were measured using nitrophenyl-esters or fluorimetric MMP substrates, respectively. Neutrophils' degradation of resin composite and dentinal collagen was quantified by measuring release of a universal 2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bisGMA)-derived resin composite degradation byproduct, bishydroxy-propoxy-phenyl-propane (bisHPPP), or a collagen degradation by-product, hydroxyproline, respectively using ultra performance liquid chromatography/mass spectrometry. Neutrophils' CE activity increased the release of bisHPPP from bisGMA monomer compared to control after 24 and 48 h (p < 0.05). Neutrophils degraded polymerized resin composite and produced higher amounts of bisHPPP than buffer after 48 h of incubation (p < 0.05). Neutrophils show generic MMP, gelatinase, MMP-2 and MMP-9, and collagenase, MMP-1 and MMP-8 activities that were stable or increased over the first 24 h (p < 0.05). Neutrophils degraded demineralized dentin more than buffer-only groups, indicated by higher amounts of hydroxyproline (p < 0.05). The ability of neutrophils to degrade both dental resin composite and tooth dentin, suggest neutrophil's potential role in root caries, and in recurrent carries by accelerating the degradation of resin-dentin interfaces, and compromising the longevity of the restoration. STATEMENT OF SIGNIFICANCE: Neutrophils are part of the innate immune system and are constantly entering the oral cavity through the gingival sulcus, in direct contact with the tooth, restoration, restoration-tooth margins and pathogenic bacteria. The current study is the first to characterize and quantify degradative activities from neutrophils toward methacrylate resin and demineralized dentin, the two main components of the restoration-tooth interface, suggesting that this interface could be negatively influenced by neutrophils, potentially contributing to increase in caries formation and progression, and premature restoration failure. This study provides a significant finding to the biomaterials and oral health fields by identifying a potential weakness in current restorative procedures and materials used to manage gingival proximal and cervical gingival or sub-gingival carious lesions.


Asunto(s)
Resinas Acrílicas/metabolismo , Resinas Compuestas/metabolismo , Dentina/metabolismo , Metacrilatos/metabolismo , Neutrófilos/metabolismo , Poliuretanos/metabolismo , Diente/química , Supervivencia Celular , Colágeno/metabolismo , Colágeno/ultraestructura , Humanos , Hidroxiprolina/metabolismo , Elastasa de Leucocito/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Neutrófilos/enzimología , Propano/metabolismo , Proteolisis , Esterol Esterasa/metabolismo
19.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30455195

RESUMEN

Neutrophils, the most numerous leukocytes, play an important role in maintaining oral health through interactions with oral microbial biofilms. Both neutrophil hyperactivity and the bacterial subversion of neutrophil responses can cause inflammation-mediated tissue damage like that seen in periodontal disease. We describe here an assay that assesses neutrophil activation responses to monospecies biofilm bacteria in vitro based on the surface expression of cluster of differentiation (CD) markers associated with various neutrophil functions. Most of what we know about neutrophil responses to bacteria is based on in vitro assays that use planktonic bacteria and isolated/preactivated neutrophils, which makes interpretation of the neutrophil responses to bacteria a challenge. An understanding of how neutrophils differentially interact with and respond to commensal and pathogenic oral bacteria is necessary in order to further understand the neutrophil's role in maintaining oral health and the pathogenesis of periodontal disease. In this study, a flow cytometry-based in vitro assay was developed to characterize neutrophil activation states based on CD marker expressions in response to oral monospecies bacterial biofilms. Using this approach, changes in CD marker expressions in response to specific prominent oral commensal and pathogenic bacteria were assayed. Several functional assays, including assays for phagocytosis, production of reactive oxygen species, activation of the transcription factor Nrf2, neutrophil extracellular trap formation, and myeloperoxidase release, were also performed to correlate neutrophil function with CD marker expression. Our results demonstrate that neutrophils display bacterial species-specific responses. This assay can be used to characterize how specific biofilms alter specific neutrophil pathways associated with their activation.


Asunto(s)
Biopelículas , Bioensayo/métodos , Neutrófilos/metabolismo , Enfermedades Periodontales/inmunología , Antígenos CD/metabolismo , Infecciones por Bacteroidaceae/inmunología , Infecciones por Bacteroidaceae/metabolismo , Biomarcadores/metabolismo , Citometría de Flujo , Interacciones Huésped-Patógeno/inmunología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Activación Neutrófila/inmunología , Infecciones por Pasteurellaceae/inmunología , Infecciones por Pasteurellaceae/metabolismo , Enfermedades Periodontales/metabolismo , Peroxidasa/metabolismo , Fagocitosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estreptocócicas/metabolismo
20.
J Periodontal Res ; 53(6): 972-982, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30079509

RESUMEN

BACKGROUND AND OBJECTIVE: Bacterial challenge is constant in the oral cavity. To contain the commensal biofilm, partly activated neutrophils are continuously recruited as part of a normal physiologic process, without exposing the host to the harmful effect of a fully active neutrophil response. This intermediate immune state has been termed para-inflammation, as opposed to the fully activated proinflammatory state in oral disease. Directly visualizing these cells and their components via transmission electron microscopy (TEM) enhances our understanding of neutrophil activation state differences in oral health and disease, as obtained from molecular studies. The aim of this study was to describe the morphology of the para-inflammatory phenotype displayed by oral neutrophils in health, and compare it to the morphology of the naïve blood neutrophil, and the proinflammatory oral neutrophils in chronic periodontitis. This morphology was characterized by differences in granule content, phagosome content and cytoplasm and nuclear changes. We also examined the morphological changes induced in naïve neutrophils, which were stimulated in vitro by bacteria, and in oral neutrophils in full tissue samples in vivo. MATERIAL AND METHODS: Neutrophils were isolated from blood and saliva samples of patients with chronic periodontitis and healthy individuals. The cells were viewed under TEM and analyzed in imaging software examining granularity, cytoplasm density, euchromatin amount in the nucleus and phagosome content. A separate cohort of blood neutrophils was incubated with Streptococcus oralis and analyzed under TEM in the same manner. Gingival tissue samples were obtained from patients with chronic periodontitis and viewed under TEM, with the neutrophils present analyzed in the same manner. RESULTS: The proinflammatory cells showed less granulation, lighter cytoplasm and higher amount of nuclear euchromatin. These changes were accentuated in the proinflammatory oral chronic periodontitis neutrophils compared to the para-inflammatory oral health neutrophils. The oral chronic periodontitis neutrophils also contained more phagosomes and had more phagosomes containing undigested bacteria. These changes were partially reproduced in the naïve blood cells after exposing them to S. oralis. The neutrophils in the gingival tissues displayed naïve morphology when viewed in the blood vessels and gradually showed proinflammatory morphological changes as they traveled through the connective tissue into the epithelium. CONCLUSION: Oral neutrophils display morphological changes consistent with partial or full activation, corresponding to their para- or proinflammatory states. These changes can also be induced in naïve cells by incubating them with commensal bacteria. Neutrophils change their morphology towards an activated state as they travel through the gingival tissue.


Asunto(s)
Periodontitis Crónica/inmunología , Periodontitis Crónica/patología , Microscopía Electrónica de Transmisión , Neutrófilos/inmunología , Neutrófilos/ultraestructura , Adulto , Anciano , Femenino , Encía/citología , Encía/inmunología , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...