Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 592(7854): 421-427, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731928

RESUMEN

Among primates, humans display a unique trajectory of development that is responsible for the many traits specific to our species. However, the inaccessibility of primary human and chimpanzee tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels1,2. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro3-5, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation6,7. Here we develop a new platform to address these limitations by fusing human and chimpanzee induced pluripotent stem cells to generate a panel of tetraploid hybrid stem cells. We applied this approach to study species divergence in cerebral cortical development by differentiating these cells into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene-expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an upregulation of the human somatostatin receptor 2 gene (SSTR2), which regulates neuronal calcium signalling and is associated with neuropsychiatric disorders8,9. We reveal a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this platform for elucidating the molecular basis of human evolution.


Asunto(s)
Fusión Celular , Regulación del Desarrollo de la Expresión Génica , Células Híbridas/citología , Células Madre Pluripotentes Inducidas/citología , Neurogénesis/genética , Alelos , Animales , Astrocitos/citología , Señalización del Calcio , Corteza Cerebral/citología , Femenino , Humanos , Masculino , Neuronas/citología , Organoides/citología , Pan troglodytes/genética , Receptores de Somatostatina/genética , Reproducibilidad de los Resultados , Transcripción Genética
2.
Nat Genet ; 53(4): 467-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731941

RESUMEN

Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for nongenetic confounding factors. We differentiated these cells into cranial neural crest cells, the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific sixfold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.


Asunto(s)
Quimera/genética , Síndrome de Ellis-Van Creveld/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Cresta Neural/metabolismo , Pan troglodytes/genética , Cráneo/metabolismo , Animales , Evolución Biológica , Diferenciación Celular , Quimera/metabolismo , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patología , Femenino , Expresión Génica , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Masculino , Ratones , Ratones Noqueados , Cresta Neural/patología , Pan troglodytes/anatomía & histología , Pan troglodytes/metabolismo , Fenotipo , Transducción de Señal , Cráneo/anatomía & histología , Especificidad de la Especie , Tetraploidía
4.
Nat Med ; 20(12): 1444-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25401692

RESUMEN

Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca(2+)-permeable and Ca(2+)-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell-derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue.


Asunto(s)
Conducta Animal , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Lóbulo Frontal/metabolismo , Demencia Frontotemporal/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Receptores AMPA/metabolismo , Conducta Social , Animales , Calcio/metabolismo , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/psicología , Ratones , Ratones Transgénicos , Corteza Prefrontal/metabolismo
5.
PLoS One ; 8(10): e76055, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24143176

RESUMEN

Transactive response DNA-binding protein 43 (TDP-43) is a major pathological protein in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). There are many disease-associated mutations in TDP-43, and several cellular and animal models with ectopic overexpression of mutant TDP-43 have been established. Here we sought to study altered molecular events in FTD and ALS by using induced pluripotent stem cell (iPSC) derived patient neurons. We generated multiple iPSC lines from an FTD/ALS patient with the TARDBP A90V mutation and from an unaffected family member who lacked the mutation. After extensive characterization, two to three iPSC lines from each subject were selected, differentiated into postmitotic neurons, and screened for relevant cell-autonomous phenotypes. Patient-derived neurons were more sensitive than control neurons to 100 nM straurosporine but not to other inducers of cellular stress. Three disease-relevant cellular phenotypes were revealed under staurosporine-induced stress. First, TDP-43 was localized in the cytoplasm of a higher percentage of patient neurons than control neurons. Second, the total TDP-43 level was lower in patient neurons with the A90V mutation. Third, the levels of microRNA-9 (miR-9) and its precursor pri-miR-9-2 decreased in patient neurons but not in control neurons. The latter is likely because of reduced TDP-43, as shRNA-mediated TDP-43 knockdown in rodent primary neurons also decreased the pri-miR-9-2 level. The reduction in miR-9 expression was confirmed in human neurons derived from iPSC lines containing the more pathogenic TARDBP M337V mutation, suggesting miR-9 downregulation might be a common pathogenic event in FTD/ALS. These results show that iPSC models of FTD/ALS are useful for revealing stress-dependent cellular defects of human patient neurons containing rare TDP-43 mutations in their native genetic contexts.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Demencia Frontotemporal/genética , MicroARNs/genética , Mutación , Neuronas/metabolismo , Anciano , Esclerosis Amiotrófica Lateral/patología , Secuencia de Bases , Diferenciación Celular , Demencia Frontotemporal/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Neuronas/patología , Fenotipo
6.
Mol Cell ; 52(2): 264-71, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095276

RESUMEN

Phagophore maturation is a key step in the macroautophagy pathway, which is critical in many important physiological and pathological processes. Here we identified Drosophila N-ethylmaleimide-sensitive fusion protein 2 (dNSF2) and soluble NSF attachment protein (Snap) as strong genetic modifiers of mutant CHMP2B, an ESCRT-III component that causes frontotemporal dementia and autophagosome accumulation. Among several SNAP receptor (SNARE) genes, Drosophila syntaxin 13 (syx13) exhibited a strong genetic interaction with mutant CHMP2B. Knockdown of syntaxin 13 (STX13) or its binding partner Vti1a in mammalian cells caused LC3-positive puncta to accumulate and blocks autophagic flux. STX13 was present on LC3-positive phagophores induced by rapamycin and was highly enriched on multilamellar structures induced by dysfunctional ESCRT-III. Loss of STX13 also caused the accumulation of Atg5-positive puncta and the formation of multilamellar structures. These results suggest that STX13 is a genetic modifier of ESCRT-III dysfunction and participates in the maturation of phagophores into closed autophagosomes.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fagosomas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Western Blotting , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Inmunoelectrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Fagosomas/ultraestructura , Fenotipo , Proteínas Qa-SNARE/genética , Interferencia de ARN , Proteínas de Transporte Vesicular/genética
7.
J Biol Chem ; 286(24): 21500-10, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21518768

RESUMEN

Metalloprotease-disintegrin ADAM12 is overexpressed and frequently mutated in breast cancer. We report here that ADAM12 expression in cultured mammalian cells is up-regulated by Notch signals. Expression of a constitutively active form of Notch1 in murine fibroblasts, myoblasts, or mammary epithelial cells or activation of the endogenous Notch signaling by co-culture with ligand-expressing cells increases ADAM12 protein and mRNA levels. Up-regulation of ADAM12 expression by Notch requires new transcription, is activated in a CSL-dependent manner, and is abolished upon inhibition of IκB kinase. Expression of a constitutively active Notch1 in NIH3T3 cells increases the stability of Adam12 mRNA. We further show that the microRNA-29 family, which has a predicted conserved site in the 3'-untranslated region of mouse Adam12, plays a critical role in mediating the stimulatory effect of Notch on ADAM12 expression. In human cells, Notch up-regulates the expression of the long form, but not the short form, of ADAM12 containing a divergent 3'-untranslated mRNA region. These studies uncover a novel paradigm in Notch signaling and establish Adam12 as a Notch-related gene.


Asunto(s)
Proteínas ADAM/biosíntesis , Regulación de la Expresión Génica , Proteínas de la Membrana/biosíntesis , MicroARNs/biosíntesis , Receptores Notch/metabolismo , Regiones no Traducidas 3' , Proteína ADAM12 , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ratones , Modelos Biológicos , Células 3T3 NIH , Péptido Hidrolasas/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Regulación hacia Arriba
8.
J Cell Sci ; 121(Pt 22): 3815-23, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18957511

RESUMEN

Myogenic cells have the ability to adopt two divergent fates upon exit from the cell cycle: differentiation or self-renewal. The Notch signaling pathway is a well-known negative regulator of myogenic differentiation. Using mouse primary myoblasts cultured in vitro or C2C12 myogenic cells, we found that Notch activity is essential for maintaining the expression of Pax7, a transcription factor associated with the self-renewal lineage, in quiescent undifferentiated myoblasts after they exit the cell cycle. Stimulation of the Notch pathway by expression of a constitutively active Notch-1, or co-culture of myogenic cells with CHO cells transfected with Delta like-1 (DLL1), increases the level of Pax7. DLL1, a ligand for Notch receptor, is shed by ADAM metalloproteases in a pool of Pax7+ C2C12 reserve cells, but it remains intact in differentiated myotubes. DLL1 shedding changes the receptor/ligand ratio and modulates the level of Notch signaling. Inhibition of DLL1 cleavage by a soluble, dominant-negative mutant form of ADAM12 leads to elevation of Notch signaling, inhibition of differentiation, and expansion of the pool of self-renewing Pax7+/MyoD- cells. These results suggest that ADAM-mediated shedding of DLL1 in a subset of cells during myogenic differentiation in vitro contributes to downregulation of Notch signaling in neighboring cells and facilitates their progression into differentiation. We propose that the proteolytic processing of DLL1 helps achieve an asymmetry in Notch signaling in initially equivalent myogenic cells and helps sustain the balance between differentiation and self-renewal.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mioblastos/citología , Miocitos del Músculo Liso/citología , Animales , Proteínas de Unión al Calcio , Línea Celular , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Transducción de Señal
9.
Int J Cancer ; 122(11): 2634-40, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18241035

RESUMEN

ADAM12 has recently emerged as a Candidate Cancer Gene in a comprehensive genetic analysis of human breast cancers. Three somatic mutations in ADAM12 were observed at significant frequencies in breast cancers: D301H, G479E and L792F. The first 2 of these mutations involve highly conserved residues in ADAM12, and our computational sequence analysis confirms that they may be cancer-related. We show that the corresponding mutations in mouse ADAM12 inhibit the proteolytic processing and activation of ADAM12 in NIH3T3, COS-7, CHO-K1 cells and in MCF-7 breast cancer cells. The D/H and G/E ADAM12 mutants exert a dominant-negative effect on the processing of the wild-type ADAM12. Immunofluorescence analysis and cell surface biotinylation experiments demonstrate that the D/H and G/E mutants are retained inside the cell and are not transported to the cell surface. Consequently, the D/H and G/E mutants, unlike the wild-type ADAM12, are not capable of shedding Delta-like l, a ligand for Notch receptor, at the cell surface, or of stimulating cell migration. Our results suggest that the breast cancer-associated mutations interfere with the intracellular trafficking of ADAM12 and result in loss of the functional ADAM12 at the cell surface.


Asunto(s)
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteína ADAM12 , Animales , Ácido Aspártico , Biotinilación , Western Blotting , Movimiento Celular , Femenino , Técnica del Anticuerpo Fluorescente , Ácido Glutámico , Glicina , Histidina , Humanos , Inmunoprecipitación , Leucina , Ratones , Fenilalanina
10.
J Biol Chem ; 282(1): 436-44, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17107962

RESUMEN

Delta-like 1 (Dll1) is a mammalian ligand for Notch receptors. Interactions between Dll1 and Notch in trans activate the Notch pathway, whereas Dll1 binding to Notch in cis inhibits Notch signaling. Dll1 undergoes proteolytic processing in its extracellular domain by ADAM10. In this work we demonstrate that Dll1 represents a substrate for several other members of the ADAM family. In co-transfected cells, Dll1 is constitutively cleaved by ADAM12, and the N-terminal fragment of Dll1 is released to medium. ADAM12-mediated cleavage of Dll1 is cell density-dependent, takes place in cis orientation, and does not require the presence of the cytoplasmic domain of ADAM12. Full-length Dll1, but not its N- or C-terminal proteolytic fragment, co-immunoprecipitates with ADAM12. By using a Notch reporter construct, we show that Dll1 processing by ADAM12 increases Notch signaling in a cell-autonomous manner. Furthermore, ADAM9 and ADAM17 have the ability to process Dll1. In contrast, ADAM15 does not cleave Dll1, although the two proteins still co-immunoprecipitate with each other. Asn-353 present in the catalytic motif of ADAM12 and other Dll1-processing ADAMs, but absent in ADAM15, is necessary for Dll1 cleavage. Dll1 cleavage is reduced in ADAM9/12/15(-/-) mouse embryonic fibroblasts (MEFs), suggesting that the endogenous ADAM9 and/or ADAM12 present in wild type MEFs contribute to Dll1 processing. Finally, the endogenous Dll1 present in primary mouse myoblasts undergoes cleavage in confluent, differentiating myoblast cultures, and this cleavage is decreased by ADAM12 small interfering RNAs. Our findings expand the role of ADAM proteins in the regulation of Notch signaling.


Asunto(s)
Proteínas ADAM/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/química , Receptores Notch/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM12 , Proteína ADAM17 , Secuencia de Aminoácidos , Animales , Células COS , Proteínas de Unión al Calcio , Chlorocebus aethiops , Cricetinae , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Células 3T3 NIH , Receptores Notch/química , Homología de Secuencia de Aminoácido , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...