Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 145: 110417, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34112420

RESUMEN

Microorganisms in grape skins play vital roles in grapevine health, productivity, wine quality and organoleptic properties. To investigate microbial diversity of muscadine grape skins, 16S and ITS sequences of 30 samples from six muscadine (Muscadinia rotundifolia Michx.) cultivars grown in Guangxi, China, were sequenced using Illumina Novaseq platform. A total of 7,317 bacterial operational taxonomic units (OTUs) and 1,611 fungal OTUs were obtained, and clustered into 38 bacterial and 7 known fungal phyla. The dominant bacterial phyla were Proteobacteria, Firmicutes, Bacteroidetes, Planctomycetes, Actinobacteria, Verrucomicrobia, Acidobacteria, and Patescibacteria, and the dominant genera were Lelliottia, Prevotella_9, Escherichia-Shigella, Lactobacillus, Pseudomonas, Akkermansia, Faecalibacterium, Rahnella, and Acinetobacter. For fungi, the dominant phyla were Ascomycota, Basidiomycota, and Mortierellomycota, and the dominant genera were Acaromyces, Uwebraunia, Penicillium, Zygosporium, Ilyonectria, Aspergillus, Neodevriesia, Strelitziana, Mortierella, and Fusarium. Alpha diversity analysis and Kruskal-Wallis H test demonstrated that microbial diversity and composition were affected by the cultivar. The Pearson correlation analysis of species revealed complex interactions among microbes. PICRUSt2 predicted that the metabolism of carbohydrates, cofactors, vitamins, amino acids, terpenoids, polyketides, lipids and biosynthesis of other secondary metabolites were abundant. These results contribute to understanding the uniqueness of muscadine grapes and the links among microorganisms in grape skins.


Asunto(s)
Ascomicetos , Microbiota , Vitis , China , Firmicutes
2.
Breed Sci ; 68(5): 606-613, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30697122

RESUMEN

Grain number per panicle is a major component of rice yield that is typically controlled by many quantitative trait loci (QTLs). The identification of genes controlling grain number per panicle in rice would be valuable for the breeding of high-yielding rice. The Oryza glaberrima chromosome segment substitution line 9IL188 had significantly smaller panicles compared with the recurrent parent 9311. QTL analysis in an F2 population derived from a cross between 9IL188 and 9311 revealed that qgnp7(t), a major QTL located on the short arm of chromosome 7, was responsible for this phenotypic variation. Fine mapping was conducted using a large F3 population containing 2250 individuals that were derived from the F2 heterozygous plants. Additionally, plant height, panicle length, and grain number per panicle of the key F4 recombinant families were examined. Through two-step substitution mapping, qgnp7(t) was finally localized to a 41 kb interval in which eight annotated genes were identified according to available sequence annotation databases. Phenotypic evaluation of near isogenic lines (NIL-qgnp7 and NIL-qGNP7) indicated that qgnp7(t) has pleiotropic effects on rice plant architecture and panicle structure. In addition, yield estimation of NILs indicated that qGNP7(t) derived from 9311 is the favorable allele. Our results provide a foundation for isolating qgnp7(t). Markers flanking this QTL will be a useful tool for the marker-assisted selection of favorable alleles in O. glaberrima improvement programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA