Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Med Sci ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842774

RESUMEN

OBJECTIVE: Intestinal fibrosis is a refractory complication of inflammatory bowel disease (IBD). Tumor necrosis factor ligand-related molecule-1A (TL1A) is important for IBD-related intestinal fibrosis in a dextran sodium sulfate (DSS)-induced experimental colitis model. This study aimed to explore the effects of TL1A on human colonic fibroblasts. METHODS: A trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis model of LCK-CD2-TL1A-GFP transgenic (Tg) or wild-type (WT) mice was established to determine the effect and mechanism of TL1A on intestinal fibrosis. The human colonic fibroblast CCD-18Co cell line was treated concurrently with TL1A and human peripheral blood mononuclear cell (PBMC) supernatant. The proliferation and activation of CCD-18Co cells were detected by BrdU assays, flow cytometry, immunocytochemistry and Western blotting. Collagen metabolism was tested by Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The level of collagen metabolism in the TNBS+ethyl alcohol (EtOH)/Tg group was greater than that in the TNBS+EtOH/WT group. Transforming growth factor-ß1 (TGF-ß1) and p-Smad3 in the TNBS+EtOH/Tg group were upregulated as compared with those in the TNBS+EtOH/WT group. The proliferation of CCD-18Co cells was promoted by the addition of human PBMC supernatant supplemented with 20 ng/mL TL1A, and the addition of human PBMC supernatant and TL1A increased CCD-18Co proliferation by 24.4% at 24 h. TL1A promoted cell activation and increased the levels of COL1A2, COL3A1, and TIMP-1 in CCD-18Co cells. Treatment of CCD-18Co cells with TL1A increased the expression of TGF-ß1 and p-Smad3. CONCLUSION: TL1A promotes TGF-ß1-mediated intestinal fibroblast activation, proliferation, and collagen deposition and is likely related to an increase in the TGF-ß1/Smad3 signaling pathway.

2.
Appl Environ Microbiol ; 89(5): e0210822, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37129483

RESUMEN

The 16S rRNA gene has been extensively used as a molecular marker to explore evolutionary relationships and profile microbial composition throughout various environments. Despite its convenience and prevalence, limitations are inevitable. Variable copy numbers, intragenomic heterogeneity, and low taxonomic resolution have caused biases in estimating microbial diversity. Here, analysis of 24,248 complete prokaryotic genomes indicated that the 16S rRNA gene copy number ranged from 1 to 37 in bacteria and 1 to 5 in archaea, and intragenomic heterogeneity was observed in 60% of prokaryotic genomes, most of which were below 1%. The overestimation of microbial diversity caused by intragenomic variation and the underestimation introduced by interspecific conservation were calculated when using full-length or partial 16S rRNA genes. Results showed that, at the 100% threshold, microbial diversity could be overestimated by as much as 156.5% when using the full-length gene. The V4 to V5 region-based analyses introduced the lowest overestimation rate (4.4%) but exhibited slightly lower species resolution than other variable regions under the 97% threshold. For different variable regions, appropriate thresholds rather than the canonical value 97% were proposed for minimizing the risk of splitting a single genome into multiple clusters and lumping together different species into the same cluster. This study has not only updated the 16S rRNA gene copy number and intragenomic variation information for the currently available prokaryotic genomes, but also elucidated the biases in estimating prokaryotic diversity with quantitative data, providing references for choosing amplified regions and clustering thresholds in microbial community surveys. IMPORTANCE Microbial diversity is typically analyzed using marker gene-based methods, of which 16S rRNA gene sequencing is the most widely used approach. However, obtaining an accurate estimation of microbial diversity remains a challenge, due to the intragenomic variation and low taxonomic resolution of 16S rRNA genes. Comprehensive examination of the bias in estimating such prokaryotic diversity using 16S rRNA genes within ever-increasing prokaryotic genomes highlights the importance of the choice of sequencing regions and clustering thresholds based on the specific research objectives.


Asunto(s)
Bacterias , Microbiota , ARN Ribosómico 16S/genética , Genes de ARNr , Bacterias/genética , Archaea/genética , Filogenia , Análisis de Secuencia de ADN
3.
J Oncol ; 2022: 3172099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813858

RESUMEN

Background: The prediction of hepatocellular carcinoma (HCC) survival is challenging because of its rapid progression. In recent years, necroptosis was found to be involved in the progression of multiple cancer types. However, the role of necroptosis in HCC remains unclear. Methods: Clinicopathological parameters and transcriptomic data of 370 HCC patients were obtained from TCGA-LIHC dataset. Prognosis-related necroptosis genes (PRNGs) were identified and utilized to construct a LASSO risk model. The GEO cohorts (GSE54236 and GSE14520) were used for external validation. We evaluated the distribution of HCC patients, the difference in prognosis, and the accuracy of the prognostic prediction of the LASSO risk model. The immune microenvironment and functional enrichment of different risk groups were further clarified. Finally, we performed a drug sensitivity analysis on the PRNGs that constructed the LASSO model and verified their mRNA expression levels in vitro. Results: A total of 48 differentially expressed genes were identified, 23 of which were PRNGs. We constructed the LASSO risk model using nine genes: SQSTM1, FLT3, HAT1, PLK1, MYCN, KLF9, HSP90AA1, TARDBP, and TNFRSF21. The outcomes of low-risk patients were considerably better than those of high-risk patients in both the training and validation cohorts. In addition, stronger bile acid metabolism, xenobiotic metabolism, and more active immune cells and immune functions were observed in low-risk patients, and high expressions of TARDBP, PLK1, and FLT3 were associated with greater drug sensitivity. With the exception of FLT3, the mRNA expression of the other eight genes was verified in Huh7 and 97H cells. Conclusions. The PRNG signature provides a novel and effective method for predicting the outcome of HCC as well as potential targets for further research.

4.
World J Gastroenterol ; 28(20): 2184-2200, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35721888

RESUMEN

BACKGROUND: Recent studies have emphasized the emerging importance of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC). However, the functions and regulatory mechanisms of numerous lncRNAs in CRC have not been fully elucidated. AIM: To explore the functional role and underlying molecular mechanisms of lncRNA TNFRSF10A-AS1 in CRC. METHODS: TNFRSF10A-AS1 expression was measured by quantitative real-time polymerase chain reaction in CRC, and the relationship between TNFRSF10A-AS1 levels and the clinicopathological features of CRC patients was analyzed. The effect of TNFRSF10A-AS1 expression on CRC proliferation and metastasis was examined in vitro and in vivo. Mechanistically, we investigated how TNFRSF10A-AS1 is involved in CRC as a competitive endogenous RNA. RESULTS: TNFRSF10A-AS1 was expressed at a high level in CRC and the upregulation of TNFRSF10A-AS1 was associated with advanced T grade and tumor size in CRC patients. A functional investigation revealed that TNFRSF10A-AS1 enhanced the proliferation, migration ability and invasion ability of colon cancer cells in vitro and in vivo. A mechanistic analysis demonstrated that TNFRSF10A-AS1 acted as a miR-3121-3p molecular sponge to regulate HuR expression, ultimately promoting colorectal tumorigenesis and progression. CONCLUSION: TNFRSF10A-AS1 exerts a tumor-promoting function through the miR-3121-3p/HuR axis in CRC, indicating that it may be a novel target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba
5.
J Gastrointest Oncol ; 13(2): 695-709, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35557592

RESUMEN

Background: Colitis-associated colorectal cancer (CAC) is a serious complication of inflammatory bowel disease (IBD). microRNA-320 (miRNA-320) promotes intestinal mucosal barrier repair in IBD and inhibits tumor progression. However, the role of miRNA-320 in the progression of CAC remains to be defined. We studied the mechanisms of miRNA-320 in the progression of CAC in mice. Methods: CAC was induced in mice (C57BL/B6) by the administration of azoxymethane (AOM) and dextran sulfate sodium (DSS), and the mice were given a lentiviral vector (LV) overexpressing mmu-miRNA-320. The level of miRNA-320 was analyzed by quantitative real-time polymerase chain reaction (qPCR). Colonic inflammation, histological analysis, and tumorigenesis were evaluated. Ki-67 in colonic tissues was examined by immunohistochemistry. B-cell lymphoma-extra large (BCL-xl) and proliferating cell nuclear antigen (PCNA) expression was examined by Western blot. Furthermore, the proliferation, migration, and invasion of colorectal cancer (CRC) cells were evaluated. The levels of interleukin-6 receptor (IL-6R), signal transducer and activator of transcription 3 (STAT3), and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3) were examined by Western blot and qPCR. Results: miRNA-320 was downregulated in CAC mice (0.57±0.13 vs. 1.00±0.12, t=-5.95, P<0.001). miRNA-320 decreased the disease activity index (DAI) scores, improved colonic inflammation, and inhibited tumor formation (tumor number: 8.00±2.90 vs. 13.67±2.73, t=-3.49, P<0.01) in mice with CAC. miRNA-320 suppressed the expression of BCL-xl, PCNA, and Ki-67 (0.38±0.07 vs. 0.69±0.08, t=-7.30, P<0.001). miRNA-320 inhibited colon cancer cell proliferation, migration, and invasion. miRNA-320 significantly inhibited the levels of IL-6R [colon tissue messenger RNA (mRNA): 4.06±1.44 vs. 10.05±1.55, t=-6.94, P<0.001], STAT3, and p-STAT3 in vivo and in vitro. Silencing IL-6R expression partially reversed the IL-6R/STAT3-suppressing and tumor-inhibiting effect of miRNA-320. Conclusions: miRNA-320 inhibits tumorigenesis in mice with CAC by suppressing IL-6R/STAT3 expression, and IL-6R is a target gene of miRNA-320.

6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(2): 253-261, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35538760

RESUMEN

Objective To explore the potential targets of triclosan in the treatment of nonalcoholic fatty liver disease(NAFLD) and to provide new clues for the future research on the application of triclosan. Methods The targets of triclosan and NAFLD were obtained via network pharmacology.The protein-protein interaction network was constructed with the common targets shared by triclosan and NAFLD.The affinity of triclosan to targets was verified through molecular docking.Gene ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were carried out to analyze the key targets and the potential mechanism of action.NAFLD model was established by feeding male C57BL/6J mice with high-fat diet for 12 weeks.The mice were randomly assigned into a model group and a triclosan group [400 mg/(kg·d),gavage once a day for 8 weeks].The hematoxylin-eosin(HE) staining was used for observation of the pathological changes and oil red O staining for observation of fat deposition in mouse liver.Western blotting was employed to detect the protein level of peroxisome proliferator-activated receptor alpha(PPARα) in the liver tissue. Results Triclosan and NAFLD had 34 common targets,19 of which may be the potential targets for the treatment,including albumin(ALB),PPARα,mitogen-activated protein kinase 8(MAPK8),and fatty acid synthase.Molecular docking predicted that ALB,PPARα,and MAPK8 had good binding ability to triclosan.KEGG pathway enrichment showcased that the targets were mainly enriched in peroxisome proliferator-activated receptor signaling pathway,in which ALB and MAPK8 were not involved.Triclosan alleviated the balloon-like change and lipid droplet vacuole,decreased the lipid droplet area,and up-regulated the expression level of PPARα in mouse liver tissue. Conclusion PPARα is a key target of triclosan in the treatment of NAFLD,which may be involved in fatty acid oxidation through the peroxisome proliferator activated receptor signaling pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Triclosán , Animales , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , PPAR alfa/metabolismo , PPAR alfa/uso terapéutico , Triclosán/metabolismo , Triclosán/farmacología , Triclosán/uso terapéutico
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(5): 729-734, 2021 Sep.
Artículo en Chino | MEDLINE | ID: mdl-34622584

RESUMEN

Along with the economic and technological development and growing demand for high-quality drinking water, direct drinking water has gained general popularity in China. However, no authoritative policy has been issued, giving a clear definition of direct drinking water and existing standards and regulations concerning direct drinking water are not definitive in nature. Existing water quality parameters are not well supported and sometimes even contradict each other. We elaborated, in this paper, the history of direct drinking water in China and systematically reviewed the existing regulations and standards related to direct drinking water. We also compared and analyzed the important microbiology, toxicology, sensory perception and general chemistry parameters in the standards. This paper is the first ever attempt at an in-depth analysis of the chaotic state of the direct drinking water industry. We have also highlighted the problems in the current standards and regulations for direct drinking water. Our study provides a basis for market regulation and the supervision and management of direct drinking water. In addition, the paper provides helpful information for laying down a definition of direct drinking water, calling for and approving of project proposals concerning the establishment of national standards for direct drinking water, and actually formulating the standards. We have made a number of suggestions: A. defining direct drinking water clearly and formulating the national standards for direct drinking water as soon as possible; B. conducting research on water quality benchmarks to provide scientific support for the formulation of the national standards for direct drinking water; C. giving more attention to the formulation of standards concerning microbiology parameters and their limits and giving consideration to the inclusion of parameters concerning viruses.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , China , Saneamiento , Contaminantes Químicos del Agua/análisis , Calidad del Agua
8.
Front Microbiol ; 11: 1040, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582057

RESUMEN

Bats (order Chiroptera) are one of the most diverse and widely distributed group of mammals with a close relationship to humans. Over the past few decades, a number of studies have been performed on bat viruses; in contrast, bacterial pathogens carried by bats were largely neglected. As more bacterial pathogens are being identified from bats, the need to study their natural microbiota is becoming urgent. In the current study, fecal samples of four bat species from different locations of China were analyzed for their microbiota composition. Together with the results of others, we concluded that bat microbiota is most commonly dominated by Firmicutes and Proteobacteria; the strict anaerobic phylum Bacteroidetes, which is dominant in other terrestrial mammals, especially humans and mice, is relatively rare in bats. This phenomenon was interpreted as a result of a highly specified gastrointestinal tract in adaptation to the flying lifestyle of bats. Further comparative study implied that bat microbiota resemble those of the order Carnivora. To discover potential bacterial pathogens, a database was generated containing the 16S rRNA gene sequences of known bacterial pathogens. Potential bacterial pathogens belonging to 12 genera were detected such as Salmonella, Shigella, and Yersinia, among which some have been previously reported in bats. This study demonstrated high resolution and repeatability in detecting organisms of rare existence, and the results could be used as guidance for future bacterial pathogen isolation.

9.
Ying Yong Sheng Tai Xue Bao ; 29(4): 1215-1224, 2018 Apr.
Artículo en Chino | MEDLINE | ID: mdl-29726231

RESUMEN

With pot experiment, two soybean (Glycine max) varieties, Jindou 21 (drought-tole-rant) and Xudou 22 (drought-sensitive), were used to examine the effects of α-naphthaleneacetic acid (NAA) on carbon metabolism of soybean under drought stress at flowering stage. The results showed that under drought stress, compared to Xudou 22, Jindou 21 had smaller decrease in net photosynthetic rate (Pn), smaller increase in photorespiration rate (Pr) and soluble sugar content of leaves, while a greater increase in the activities of sucrose phosphate synthase (SPS) and sucrose synthetase (SS) (synthesis) of leaves and sucrose content of roots. NAA treatment increased Pn and decreased Pr under drought stress, and thus obviously alleviated the growth inhibition of drought stress on plants. NAA treatment reduced the activities of starch-degrading enzymes, acid invertase (AI) and SS (cleavage), thereby inhibited the accumulation of soluble sugar induced by drought stress. In addition, NAA treatment increased SPS and SS (synthesis) activities of leaves, sucrose content of roots and shoot-root ratio, indicating that NAA treatment improved the transportation of sucrose from leaf blade to root under drought stress. In conclusion, exogenous NAA could enhance drought tolerance in soybean by regulating carbon metabolism.


Asunto(s)
Sequías , Glycine max , Ácidos Naftalenoacéticos/farmacología , Metabolismo de los Hidratos de Carbono , Carbono , Fabaceae , Glucosiltransferasas , Fotosíntesis , Hojas de la Planta , Estrés Fisiológico , Sacarosa , beta-Fructofuranosidasa
10.
Appl Environ Microbiol ; 79(19): 5962-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23872556

RESUMEN

Ever since Carl Woese introduced the use of 16S rRNA genes for determining the phylogenetic relationships of prokaryotes, this method has been regarded as the "gold standard" in both microbial phylogeny and ecology studies. However, intragenomic heterogeneity within 16S rRNA genes has been reported in many investigations and is believed to bias the estimation of prokaryotic diversity. In the current study, 2,013 completely sequenced genomes of bacteria and archaea were analyzed and intragenomic heterogeneity was found in 952 genomes (585 species), with 87.5% of the divergence detected being below the 1% level. In particular, some extremophiles (thermophiles and halophiles) were found to harbor highly divergent 16S rRNA genes. Overestimation caused by 16S rRNA gene intragenomic heterogeneity was evaluated at different levels using the full-length and partial 16S rRNA genes usually chosen as targets for pyrosequencing. The result indicates that, at the unique level, full-length 16S rRNA genes can produce an overestimation of as much as 123.7%, while at the 3% level, an overestimation of 12.9% for the V6 region may be introduced. Further analysis showed that intragenomic heterogeneity tends to concentrate in specific positions, with the V1 and V6 regions suffering the most intragenomic heterogeneity and the V4 and V5 regions suffering the least intragenomic heterogeneity in bacteria. This is the most up-to-date overview of the diversity of 16S rRNA genes within prokaryotic genomes. It not only provides general guidance on how much overestimation can be introduced when applying 16S rRNA gene-based methods, due to its intragenomic heterogeneity, but also recommends that, for bacteria, this overestimation be minimized using primers targeting the V4 and V5 regions.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Clasificación/métodos , Variación Genética , ARN Ribosómico 16S/genética , Sesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...