Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167266, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38806072

RESUMEN

Acute cholestatic liver injury (ACLI) is a disease associated with bile duct obstruction that causes liver inflammation and apoptosis. Although G protein-coupled bile acid receptor1 (Gpbar-1) has diverse metabolic roles, its involvement in ACLI-associated immune activation remains unclear. Liver tissues and blood samples from 20 patients with ACLI and 20 healthy individuals were analyzed using biochemical tests, H&E staining, western blotting, and immunohistochemistry to verify liver damage and expression of Gpbar-1. The expression of Gpbar-1, cAMP/PKA signaling, and the NLRP3 inflammasome was tested in wild-type (WT) and Gpbar-1 knockdown (si-Gpbar-1) mice with ACLI induced by bile duct ligation (BDL) and in primary Kupffer cells (KCs) with or without Gpbar-1-siRNA. The results showed that total bile acids and Gpbar-1 expressions were elevated in patients with ACLI. Gpbar-1 knockdown significantly worsened BDL-induced acute hepatic damage, inflammation, and liver apoptosis in vivo. Knockdown of Gpbar-1 heightened KC sensitivity to lipopolysaccharide (LPS) stimulation. Gpbar-1 activation inhibited LPS-induced pro-inflammatory responses in normal KCs but not in Gpbar-1-knockdown KCs. Notably, NLRP3-ASC inflammasome expression was effectively enhanced by Gpbar-1 deficiency. Additionally, Gpbar-1 directly increased intracellular cAMP levels and PKA phosphorylation, thus disrupting the NLRP3-ASC inflammasome. The pro-inflammatory characteristic of Gpbar-1 deficiency was almost neutralized by the NLRP3 inhibitor CY-09. In vitro, M1 polarization was accelerated in LPS-stimulated Gpbar-1-knockdown KCs. Therapeutically, Gpbar-1 deficiency exacerbated BDL-induced ACLI, which could be rescued by inhibition of the NLRP3-ASC inflammasome. Our study reveal that Gpbar-1 may act as a novel immune-mediated regulator of ACLI by inhibiting the NLRP3-ASC inflammasome.

2.
Transpl Immunol ; 84: 102044, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663757

RESUMEN

BACKGROUND: Glutamine is crucial for the activation and efficacy of T cells, and may play a role in regulating the immune environment. This study aimed to investigate the potential role of glutamine in the activation and proliferation of induced regulatory T cells (iTregs). METHODS: CD4+CD45RA+T cells were sorted from peripheral blood mononuclear cells and cultured to analyze iTreg differentiation. Glutamine was then added to the culture system to evaluate the effects of glutamine on iTregs by determining oxidative phosphorylation (OXPHOS), apoptosis, and cytokine secretion. Additionally, a humanized murine graft-versus-host disease (GVHD) model was constructed to confirm the efficacy of glutamine-treated iTregs in vivo. RESULTS: After being cultured in vitro, glutamine significantly enhanced the levels of Foxp3, CTLA-4, CD39, CD69, IL-10, TGF-ß, and Ki67 (CTLA-4, IL-10, TGF-ß are immunosuppressive markers of iTregs) compared with that of the control iTregs (P < 0.05). Furthermore, the growth curve showed that the proliferative ability of glutamine-treated iTregs was better than that of the control iTregs (P < 0.01). Compared with the control iTregs, glutamine supplementation significantly increased oxygen consumption rates and ATP production (P < 0.05), significantly downregulated Annexin V and Caspase 3, and upregulated BCL2 (P < 0.05). However, GPNA significantly reversed the effects of glutamine (P < 0.05). Finally, a xeno-GVHD mouse model was successfully established to confirm that glutamine-treated iTregs increased the mice survival rate, delayed weight loss, and alleviated colon injury. CONCLUSION: Glutamine supplementation can improve the activity and immunosuppressive action of iTregs, and the possible mechanisms by which this occurs are related to cell proliferation, apoptosis, and OXPHOS.


Asunto(s)
Glutamina , Enfermedad Injerto contra Huésped , Linfocitos T Reguladores , Glutamina/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Ratones , Humanos , Células Cultivadas , Enfermedad Injerto contra Huésped/inmunología , Proliferación Celular/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Terapia de Inmunosupresión , Citocinas/metabolismo
3.
Opt Lett ; 49(6): 1425-1428, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489416

RESUMEN

Terahertz cross correlation spectroscopy (THz-CCS) systems using broadband incoherent light as the pumping source have received increasing attention from researchers in recent years. However, a comprehensive and in-depth understanding of THz-CCS is still needed to obtain a detailed optimization scheme. Here we systematically investigate the influences of the detection parameters, light propagation process, and pump source on the CCS signals. The impacts of the filter slopes and time constants in lock-in detection are revealed for optimizing the signal-to-noise ratio and bandwidth of the THz signal. By varying the optical fiber length and dispersion coefficient, the dispersion insensitivity of THz-CCS was experimentally demonstrated. The comparison of different pump sources (SLD and ASE) shows that the over-wide and non-flat pump spectrum may attenuate the CCS signal because of the energy waste brought by the photomixing process under the limited bandwidth of the photomixer. Our research may lead to a deeper understanding and further optimization of the THz-CCS system, which will promote the development and widespread application of what is to the best of our knowledge a new technique.

4.
Front Immunol ; 15: 1356075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529274

RESUMEN

Background: During aging, chronic inflammation can promote tumor development and metastasis. Patients with chronic inflammatory bowel diseases (IBD) are at an increased risk of developing colorectal cancer (CRC). However, the molecular mechanism underlying is still unclear. Methods: We conducted a large-scale single-cell sequencing analysis comprising 432,314 single cells from 92 CRC and 24 IBD patients. The analysis focused on the heterogeneity and commonality of CRC and IBD with respect to immune cell landscape, cellular communication, aging and inflammatory response, and Meta programs. Results: The CRC and IBD had significantly different propensities in terms of cell proportions, differential genes and their functions, and cellular communication. The progression of CRC was mainly associated with epithelial cells, fibroblasts, and monocyte-macrophages, which displayed pronounced metabolic functions. In particular, monocyte-macrophages were enriched for the aging and inflammation-associated NF-κB pathway. And IBD was enriched in immune-related functions with B cells and T cells. Cellular communication analysis in CRC samples displayed an increase in MIF signaling from epithelial cells to T cells, and an increase in the efferent signal of senescence-associated SPP1 signaling from monocyte-macrophages. Notably, we also found some commonalities between CRC and IBD. The efferent and afferent signals showed that the pro-inflammatory cytokine played an important role. And the activity of aging and inflammatory response with AUCell analysis also showed a high degree of commonality. Furthermore, using the Meta programs (MPs) with the NMF algorithm, we found that the CRC non-malignant cells shared a substantial proportion of the MP genes with CRC malignant cells (68% overlap) and IBD epithelial cells (52% overlap), respectively. And it was extensively involved in functions of cell cycle and immune response, revealing its dual properties of inflammation and cancer. In addition, CRC malignant and non-malignant cells were enriched for the senescence-related cell cycle G2M phase transition and the p53 signaling pathway. Conclusion: Our study highlights the characteristics of aging, inflammation and tumor in CRC and IBD at the single-cell level, and the dual property of inflammation-cancer in CRC non-malignant cells may provide a more up-to-date understanding of disease transformation.


Asunto(s)
Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Humanos , Transcriptoma , Inflamación/genética , Inflamación/complicaciones , Citocinas , Microambiente Tumoral/genética
5.
ANZ J Surg ; 94(4): 655-659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553889

RESUMEN

OBJECTIVE: To investigate the safety and application value of combining Laennec extracapsular occlusion with ICG fluorescence imaging in laparoscopic anatomic hepatectomy. METHODS: Complete laparoscopic dissection was performed outside the Laennec sheath, blocking Glisson's pedicle of the corresponding liver segment or lobe. An appropriate amount of indocyanine green (ICG) dye was intravenously injected, and the boundary line between the pre-cut liver segment and liver lobe was identified using fluorescence laparoscopy. Complete resection of the liver segment or lobe was performed based on anatomical markers. Clinical data, including operation time, intraoperative blood loss, postoperative hospital stay, and postoperative complications, were collected. RESULTS: A total of 14 cases were included in the study, including seven cases of primary liver cancer, three cases of metastatic liver cancer, three cases of intrahepatic bile duct calculi, and one case of hepatic hemangioma. All 14 patients underwent anatomic hepatectomy under fluorescent laparoscopy, with four cases involving the right liver, seven cases involving the left liver, two cases involving the right anterior lobe, and one case involving the right posterior lobe. CONCLUSION: Combining laparoscopic follow-up of the Laennec membrane with Glisson outer sheath block and intraoperative ICG fluorescence imaging provides real-time guidance for locating the resection boundaries during anatomic hepatectomy. This approach helps in controlling intraoperative bleeding, reducing operation time, and ensuring high safety. It holds significant value in clinical application.


Asunto(s)
Laparoscopía , Neoplasias Hepáticas , Humanos , Hepatectomía/métodos , Verde de Indocianina , Laparoscopía/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Imagen Óptica/métodos
6.
Scand J Gastroenterol ; 59(6): 710-721, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38357893

RESUMEN

BACKGROUND: The lncRNA TRG-AS1 and its co-expressed gene P2RY10 are important for colorectal cancer (CRC) occurrence and development. The purpose of our research was to explore the roles of TRG-AS1 and P2RY10 in CRC progression. METHODS: The abundance of TRG-AS1 and P2RY10 in CRC cell lines (HT-29 and LoVo) and normal colon cells FHC was determined and difference between CRC cells and normal cells was compared. LoVo cells were transfected with si-TRG-AS1 and si-P2RY10 constructs. Subsequently, the viability, colony formation, and migration of the transfected cells were analyzed using cell counting kit-8, clonogenicity, and scratch-wound/Transwell® assays, respectively. Cells overexpressing GNA13 were used to further explore the relationship between TRG-AS1 and P2RY10 along with their downstream functions. Finally, nude mice were injected with different transfected cell types to observe tumor formation in vivo. RESULTS: TRG-AS1 and P2RY10 were significantly upregulated in HT-29 and LoVo compared to FHC cells. TRG-AS1 knockdown and P2RY10 silencing suppressed the viability, colony formation, and migration of LoVo cells. TRG-AS1 knockdown downregulated the expression of P2RY10, GNA12, and GNA13, while P2RY10 silencing downregulated the expression of TRG-AS1, GNA12, and GNA13. Additionally, GNA13 overexpression reversed the cell growth and gene expression changes in LoVo cells induced by TRG-AS1 knockdown or P2RY10 silencing. In vivo experiments revealed that CRC tumor growth was suppressed by TRG-AS1 knockdown and P2RY10 silencing. CONCLUSIONS: TRG-AS1 knockdown repressed the growth of HT-29 and LoVo by regulating P2RY10 and GNA13 expression.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , ARN Largo no Codificante , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Células HT29 , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba
7.
Med Oncol ; 41(2): 44, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170382

RESUMEN

Prostate cancer (PCa) is one of the most common malignant tumors that exhibit both chemoresistance and recurrence. SUV39H2 is highly expressed in many types of human tumors, but its role in the development and progression of PCa has never been clarified. The aim of this study is to elucidate the role of SUV39H2 in the development and progression of PCa, its association with the AKT/FOXO signaling pathway, and its potential implications for PCa diagnosis and treatment. SUV39H2 expression was analyzed in The Cancer Genome Atlas (TCGA) and genotype tissue expression pan-cancer data. The TCGA database was evaluated for SUV39H2 enrichment and its correlation to immune cell infiltration. SUV39H2 levels in PCa tissues and control tissues were determined in 30 patients using qPCR and IHC. Clinical relevance was assessed via The Cancer Genome Atlas (TCGA). In vitro assessments including colony formation assays, Western Blot analysis, CCK-8 assays, and flow cytometry were utilized to establish SUV39H2's contribution to PCa cell growth. The influence of SUV39H2 on PC3 and DU145 cell proliferation was assessed through a cell line-derived xenograft model. Sphere formation assays and qPCR were employed to delineate SUV39H2's role in PCa stemness and chemosensitivity. In vitro macrophage polarization assays provided insights into SUV39H2's association with M2 macrophages, while enrichment analysis shed light on its role in FOXO signaling. PCa tissues expressed higher levels of SUV39H2 than normal tissues. By knocking down SUV39H2, PCa cells were made more chemosensitive to docetaxel and cell proliferation and stemness were inhibited. Additionally, SUV39H2 knockdown significantly inhibited in vivo PCa cell growth and inhibited the polarization of macrophages. Furthermore, SUV39H2 was found to regulate AKT/FOXO signaling by increasing Akt and FOXO3a phosphorylation. Our findings highlight SUV39H2's role in PCa cell apoptosis and chemosensitivity mainly by regulating the AKT/FOXO signaling pathway and suggest that SUV39H2 could be a potential target for PCa diagnosis and treatment.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Apoptosis , Histona Metiltransferasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo
8.
Cell Death Dis ; 14(11): 757, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985768

RESUMEN

Aggressiveness and drug resistance are major challenges in the clinical treatment of glioblastoma (GBM). Our previously research reported a novel candidate oncogene ribosomal protein L22 like 1 (RPL22L1). The aim of this study was to elucidate the potential role and mechanism of RPL22L1 in progression and temozolomide (TMZ) resistance of GBM. Online database, tissue microarrays and clinical tissue specimens were used to evaluate the expression and clinical implication of RPL22L1 in GBM. We performed cell function assays, orthotopic and subcutaneous xenograft tumor models to evaluate the effects and molecular mechanisms of RPL22L1 on GBM. RPL22L1 expression was significantly upregulated in GBM and associated with poorer prognosis. RPL22L1 overexpression enhanced GBM cell proliferation, migration, invasion, TMZ resistance and tumorigenicity, which could be reduced by RPL22L1 knockdown. Further, we found RPL22L1 promoted mesenchymal phenotype of GBM and the impact of these effects was closely related to EGFR/STAT3 pathway. Importantly, we observed that STAT3 specific inhibitor (Stattic) significantly inhibited the malignant functions of RPL22L1, especially on TMZ resistance. RPL22L1 overexpressed increased combination drug sensitive of Stattic and TMZ both in vitro and in vivo. Moreover, Stattic effectively restored the sensitive of RPL22L1 induced TMZ resistance in vitro and in vivo. Our study identified a novel candidate oncogene RPL22L1 which promoted the GBM malignancy through STAT3 pathway. And we highlighted that Stattic combined with TMZ therapy might be an effective treatment strategy in RPL22L1 high-expressed GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Oncogenes , Resistencia a Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
9.
Comput Struct Biotechnol J ; 21: 5212-5227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928949

RESUMEN

E3 ubiquitin ligases (E3s) play a pivotal role in regulating the specificity of protein ubiquitination, and their significant functions as regulators of immune responses against tumors are attracting considerable interest. RBCK1-an RBR E3 ligase-is involved in immune regulation and tumor development. However, the potential effect of RBCK1 on glioma remains enigmatic. In the present study, we performed comprehensive analyses of multilevel data, which disclosed distribution characteristics of RBCK1 in pan-cancer, especially in glioma. Functional roles of RBCK1 were further confirmed using immunohistochemistry, cell biological assays, and xenograft experiments. Aberrant ascending of RBCK1 in multiple types of cancer was found to remodel the immunosuppressive microenvironment of glioma by regulating immunomodulators, cancer immunity cycles, and immune cell infiltration. Notably, the MES-like/RBCK1High cell population, a unique subset of cells in the microenvironment, suppressed T cell-mediated cell killing in glioma. Elevated expression levels of RBCK1 suggested a glioma subtype characterized by immunosuppression and hypo-responsiveness to immunotherapy but manifesting surprisingly increased responses to anti-angiogenic therapy. In conclusion, anti-RBCK1 target therapy might be beneficial for glioma treatment. Moreover, RBCK1 assisted in predicting molecular subtypes of glioma and response rates of patients to different clinical treatments, which could guide personalized therapy.

10.
Cell Mol Immunol ; 20(11): 1313-1327, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653127

RESUMEN

Aeroallergen sensitization, mainly mediated by lung epithelium and dendritic cells (DCs), is integral to allergic asthma pathogenesis and progression. IL-10 has a dual role in immune responses, as it inhibits myeloid cell activation but promotes B-cell responses and epithelial cell proliferation. Here, we report a proinflammatory function of B-cell-derived IL-10 modulated by Bcl-3 in allergic asthma. Specifically, Bcl-3-/- mice showed elevated IL-10 levels and were found to be highly vulnerable to allergic asthma induced by house dust mites (HDMs). IL-10 had a positive correlation with the levels of the DC chemoattractant CCL-20 in HDM-sensitized mice and in patients with asthma and induced a selective increase in CCL-20 production by mouse lung epithelial cells. Blockade of IL-10 or IL-10 receptors during sensitization dampened both HDM-induced sensitization and asthma development. IL-10 levels peaked 4 h post sensitization with HDM and IL-10 was primarily produced by B cells under Bcl-3-Blimp-1-Bcl-6 regulation. Mice lacking B-cell-derived IL-10 displayed decreased lung epithelial CCL-20 production and diminished DC recruitment to the lungs upon HDM sensitization, thereby demonstrating resistance to HDM-induced asthma. Moreover, responses to HDM stimulation in Bcl-3-/- mice lacking B-cell-derived IL-10 were comparable to those in Bcl-3+/+ mice. The results revealed an unexpected role of B-cell-derived IL-10 in promoting allergic sensitization and demonstrated that Bcl-3 prevents HDM-induced asthma by inhibiting B-cell-derived IL-10 production. Thus, targeting the Bcl-3/IL-10 axis to inhibit allergic sensitization is a promising approach for treating allergic asthma. IL-10 is released rapidly from lung plasma cells under Bcl-3-Blimp-1-Bcl-6 regulation upon house dust mite exposure and amplifies lung epithelial cell (EC)-derived CCL-20 production and subsequent dendritic cell (DC) recruitment to promote allergic sensitization in asthma.


Asunto(s)
Asma , Interleucina-10 , Animales , Humanos , Ratones , Alérgenos , Células Dendríticas , Modelos Animales de Enfermedad , Pulmón/patología , Pyroglyphidae , Células Th2
11.
Cell Death Dis ; 14(7): 418, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443161

RESUMEN

Inflammation resolution is critical for acute lung injury (ALI) recovery. Interleukin (IL)-10 is a potent anti-inflammatory factor. However, its role in ALI resolution remains unclear. We investigated the effects of IL-10 during the ALI resolution process in a murine lipopolysaccharide (LPS)-induced ALI model. Blockade of IL-10 signaling aggravates LPS-induced lung injury, as manifested by elevated pro-inflammatory factors production and increased neutrophils recruitment to the lung. Thereafter, we used IL-10 GFP reporter mice to discern the source cell of IL-10 during ALI. We found that IL-10 is predominantly generated by B cells during the ALI recovery process. Furthermore, we used IL-10-specific loss in B-cell mice to elucidate the effect of B-cell-derived IL-10 on the ALI resolution process. IL-10-specific loss in B cells leads to increased pro-inflammatory cytokine expression, persistent leukocyte infiltration, and prolonged alveolar barrier damage. Mechanistically, B cell-derived IL-10 inhibits the activation and recruitment of macrophages and downregulates the production of chemokine KC that recruits neutrophils to the lung. Moreover, we found that IL-10 deletion in B cells leads to alterations in the cGMP-PKG signaling pathway. In addition, an exogenous supply of IL-10 promotes recovery from LPS-induced ALI, and IL-10-secreting B cells are present in sepsis-related ARDS. This study highlights that B cell-derived IL-10 is critical for the resolution of LPS-induced ALI and may serve as a potential therapeutic target.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Citocinas/metabolismo
12.
Front Immunol ; 14: 1183871, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275887

RESUMEN

Background: Idiopathic Pulmonary Fibrosis (IPF) can be described as a debilitating lung disease that is characterized by the complex interactions between various immune cell types and signaling pathways. Chromatin-modifying enzymes are significantly involved in regulating gene expression during immune cell development, yet their role in IPF is not well understood. Methods: In this study, differential gene expression analysis and chromatin-modifying enzyme-related gene data were conducted to identify hub genes, common pathways, immune cell infiltration, and potential drug targets for IPF. Additionally, a murine model was employed for investigating the expression levels of candidate hub genes and determining the infiltration of different immune cells in IPF. Results: We identified 33 differentially expressed genes associated with chromatin-modifying enzymes. Enrichment analyses of these genes demonstrated a strong association with histone lysine demethylation, Sin3-type complexes, and protein demethylase activity. Protein-protein interaction network analysis further highlighted six hub genes, specifically KDM6B, KDM5A, SETD7, SUZ12, HDAC2, and CHD4. Notably, KDM6B expression was significantly increased in the lungs of bleomycin-induced pulmonary fibrosis mice, showing a positive correlation with fibronectin and α-SMA, two essential indicators of pulmonary fibrosis. Moreover, we established a diagnostic model for IPF focusing on KDM6B and we also identified 10 potential therapeutic drugs targeting KDM6B for IPF treatment. Conclusion: Our findings suggest that molecules related to chromatin-modifying enzymes, primarily KDM6B, play a critical role in the pathogenesis and progression of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Ratones , Animales , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Bleomicina , Cromatina , Biología Computacional , Histona Demetilasas con Dominio de Jumonji/genética , N-Metiltransferasa de Histona-Lisina/genética
13.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1393-1403, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337632

RESUMEN

Since the prognosis of patients with pancreatic cancer is very poor and there is a lack of treatment methods, this study is performed to investigate the function of PITX2 in pancreatic stellate cells (PSCs) in the progression of pancreatic cancer. Scientific hypotheses are proposed according to bioinformatics analysis and tissue microarray analysis. Stable knockdown of PITX2 in PSCs is achieved through lentiviral infection. The relative expressions of PITX2, α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are measured in wild-type PSCs and PITX2-knockdown PSCs. Proliferative capacity is measured by EdU assay. After coculture with PSCs, the proliferation, invasion and migration capacity of pancreatic cancer cells are tested. EMT and Wnt/ß-catenin downstream genes of pancreatic cancer cells are investigated to reveal the potential mechanism. Bioinformatics analysis reveals that the PITX2 gene is highly expressed in stromal cells in pancreatic cancer and is correlated with squamous-type PDAC. Analysis of PDAC tissue microarray further demonstrates that high PITX2 level in stromal cells is correlated with poor prognosis in PDAC. After stable knockdown of PITX2 in PSCs, the relative protein levels of α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are decreased, and the proliferative capacity of PSCs is also decreased. After coculture with PSCs, in which PITX2 expression is downregulated, the proliferation, invasion and migration capacities of pancreatic cancer cells are inhibited. Thus, our results show that PITX2-silenced PSCs inhibit the growth, migration and invasion of pancreatic cancer cells via reduced EMT and Wnt/ß-catenin signaling.


Asunto(s)
Neoplasias Pancreáticas , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Vimentina/genética , Vimentina/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Movimiento Celular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Vía de Señalización Wnt/genética , Línea Celular Tumoral , Proliferación Celular/genética
14.
Wideochir Inne Tech Maloinwazyjne ; 18(1): 108-116, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37064551

RESUMEN

Introduction: In emergency surgery for acute obstruction of the common bile duct (CBD), primary duct closure (PC) of the CBD after laparoscopic common bile duct exploration (LCBDE) remains challenging. Aim: To explore the safety and effectiveness of this surgical method after LCBDE in patients with acute choledocholithiasis and discuss the feasibility of PC in the CBD. Material and methods: This retrospective study on surgical efficacy and safety involved 232 patients treated at The Third Affiliated Hospital of Soochow University between January 2015 and December 2019. These patients underwent LC + LCBDE for acute choledocholithiasis and were categorized into PC and T-tube drainage (TD) groups based on the method of closure of the CBD. The basic preoperative information, intraoperative situation, postoperative situation, and complications were analysed and compared between groups. Results: The baseline characteristics and preoperative information of patients between the 2 groups were balanced. Patients in the PC group had a shorter operation time (p < 0.001) and CBD suturing time (p < 0.001) than those in the TD group. In addition, compared with the TD group in postoperative situations, gastrointestinal recovery (p = 0.002), drainage removal (p < 0.001), and the length of postoperative hospital stay (p = 0.004) were markedly decreased in the PC group. In terms of intraoperative blood loss (p = 0.961), use of pipe washing (49.0 vs. 54.6%, p = 0.397), use of stone basket (50.0 vs. 42.3%, p = 0.243), use of electrohydraulic lithotripsy (1.0 vs. 3.1%, p = 0.525), postoperative liver function, and complications there was no significant difference between the PC and TD groups. No intraoperative transfusion and postoperative mortality occurred in either group. During 6 months of follow-up, only 1 patient showed biliary stricture in the PC group, and 2 and 4 patients in the PC and TD groups, respectively, showed residual stones. Conclusions: PC after LCBDE in acute choledocholithiasis patients displays better therapeutic outcomes than TD in some intraoperative and postoperative situations. PC of the CBD after LCBDE is a safe and effective therapeutic option in acute choledocholithiasis patients.

15.
Cell Death Discov ; 9(1): 53, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759593

RESUMEN

The ability of the human liver to both synthesize extracellular matrix(ECM), as well as regulate fibrogenesis, are integral functions to maintaining homoeostasis. Chronic liver injury stimulates fibrogenesis in response to the imbalance between ECM accumulation and fibrosis resolution. Liver disease that induces fibrogenesis is associated with multiple risk factors like hepatitis infection, schistosomiasis, alcohol, certain drugs, toxicants and emerging aetiology like diabetes and obesity. The activation of hepatic stellate cells (HSCs), whose function is to generate and accumulate ECM, is a pivotal event in liver fibrosis. Simultaneously, HSCs selectively promote regulatory T-cells (Tregs) in an interleukin-2-dependent pattern that displays a dual relationship. On the one hand, Tregs can protect HSCs from NK cell attack, while on the other hand, they demonstrate an inhibitory effect on HSCs. This paper reviews the dual role of Tregs in liver fibrogenesis which includes its promotion of immunosuppression, as well as its activation of fibrosis. In particular, the balance between Tregs and the Th17 cell population, which produce interleukin (IL)-17 and IL-22, is explored to demonstrate their key role in maintaining homoeostasis and immunoregulation. The contradictory roles of Tregs in liver fibrosis in different immune microenvironments and molecular pathways need to be better understood if they are to be deployed to manage this disease.

16.
Cell Death Dis ; 14(2): 165, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849492

RESUMEN

Chronic inflammation promotes the tumorigenesis and cell stemness maintenance of colorectal cancer (CRC). However, the bridge role of long noncoding RNA (lncRNA) in linking chronic inflammation to CRC development and progression needs better understanding. Here, we elucidated a novel function of lncRNA GMDS-AS1 in persistently activated signal transducer and transcription activator 3 (STAT3) and Wnt signaling and CRC tumorigenesis. Interleukin-6 (IL-6) and Wnt3a induced lncRNA GMDS-AS1 expression, which was highly expressed in the CRC tissues and plasma of CRC patients. GMDS-AS1 knockdown impaired the survival, proliferation and stem cell-like phenotype acquisition of CRC cells in vitro and in vivo. We performed RNA sequencing (RNA-seq) and mass spectrometry (MS) to probe target proteins and identify their contributions to the downstream signaling pathways of GMDS-AS1. In CRC cells, GMDS-AS1 physically interacted with the RNA-stabilizing protein HuR, thereby protecting the HuR protein from polyubiquitination- and proteasome-dependent degradation. HuR stabilized STAT3 mRNA and upregulated the levels of basal and phosphorylated STAT3 protein, persistently activating STAT3 signaling. Our research revealed that the lncRNA GMDS-AS1 and its direct target HuR constitutively activate STAT3/Wnt signaling and promote CRC tumorigenesis, the GMDS-AS1-HuR-STAT3/Wnt axis is a therapeutic, diagnostic and prognostic target in CRC.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Factores de Transcripción , Inflamación , Neoplasias Colorrectales/genética , Factor de Transcripción STAT3/genética
17.
Oxid Med Cell Longev ; 2023: 1686804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36852327

RESUMEN

Purpose: We examined whether anlotinib can attenuate folic acid-induced and unilateral ureteral obstruction-induced renal fibrosis and explored the underlying antifibrotic mechanism. Materials and Methods: We have evaluated the effects of anlotinib on folic acid-induced and unilateral ureteral obstruction-induced renal fibrosis in mice through in vivo experiments of unilateral ureteral obstruction or folic acid-induced interstitial fibrosis and in vitro models of transforming growth factor-ß1 induced HK-2 human renal proximal tubule cells. Serum renal function parameters and inflammatory cytokine levels were measured, and histological changes of renal injury and fibrosis were analyzed by HE staining and immunohistochemistry. Immunohistochemistry and Western blotting were used to determine the mechanism of action of anlotinib in ameliorating renal fibrosis. Results: Anlotinib improved proteinuria and reduced renal impairment in folic acid-induced mouse models of renal fibrosis. Anlotinib reduced tubular injury, deposition of tubular extracellular matrix, and expression of alpha-smooth muscle actin, transforming growth factor-ß1, and cytosolic inflammatory factors compared with controls. Conclusions: Anlotinib ameliorated renal function, improved extracellular matrix deposition, reduced protein levels of epithelial-mesenchymal transition markers, and decreased cellular inflammatory factors. Anlotinib reduced renal injury and fibrosis by inhibiting the transforming growth factor-ß1 signaling pathway through AKT and ERK channels.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Factor de Crecimiento Transformador beta1 , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Transducción de Señal , Ácido Fólico , Fibrosis
18.
Transpl Immunol ; 77: 101805, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841514

RESUMEN

CD8+Tregs are important immunoregulatory cells that participate in immunopathological processes in many diseases. Rapamycin (Rapa) is a macrolide immunosuppressant that inhibits the mammalian target of rapamycin (mTOR) and has been shown to improve CD4+-induced Tregs (iTregs) generation. This study aimed to evaluate the role of Rapa in the generation and function of CD8+iTregs. Human CD8 + CD25-CD45RA + T cells were divided into two groups, one with Rapa and the other without Rapa, and both groups were cultured under Treg-induced conditions. Rapa significantly improved Foxp3 expression and the suppressive function of CD8+iTregs in vitro. Further studies showed that Rapa suppressed inflammatory cytokine expression and enhanced anti-inflammatory cytokine expression. Under inflammatory conditions in vitro, Rapa-CD8 + iTregs sustained Foxp3 and anti-inflammatory cytokine expression. An in-depth study showed that Rapa regulated CpG demethylation in the Foxp3 region and STAT1 and STAT3 phosphorylation in CD8+iTregs. Finally, we compared the regulatory ability of Rapa and all-trans retinoic acid, another reagent that stimulates CD4+ iTreg generation in vitro, which showed that Rapa, but not all-trans retinoic acid, improved CD8+ iTreg induction and suppressed CD4+T cell expansion in vitro and protected against graft-versus-host disease in a humanized murine model in vivo. These results strongly suggest that CD8+iTregs initiated by Rapa may represent a new therapeutic strategy for inflammatory and autoimmune diseases.


Asunto(s)
Enfermedad Injerto contra Huésped , Sirolimus , Ratones , Humanos , Animales , Sirolimus/farmacología , Sirolimus/uso terapéutico , Modelos Animales de Enfermedad , Linfocitos T Reguladores , Citocinas/metabolismo , Linfocitos T CD8-positivos/patología , Factores de Transcripción Forkhead/metabolismo , Tretinoina/farmacología , Mamíferos/metabolismo
19.
Hepatology ; 78(1): 120-135, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651177

RESUMEN

BACKGROUND AND AIMS: Myofibroblasts are considered the major effector cell type of liver fibrosis and primarily derived from hepatic stellate cells (HSCs). In the present study, we investigated the contribution of C-C motif chemokine (CCL11) to HSC-myofibroblast trans -differentiation and its implication in liver fibrosis. APPROACH AND RESULTS: We report that CCL11 levels were elevated in HSCs, but not in hepatocytes or Kupffer cells, isolated from mice with liver fibrosis compared with the control mice. CCL11 levels were also up-regulated by 2 pro-fibrogenic growth factors TGF-ß and platelet derived growth factor in cultured HSCs. Mechanistically, zinc finger factor 281 bound to the CCL11 promoter and mediated CCL11 trans -activation in HSCs. Depletion of CCL11 attenuated whereas treatment with recombinant CCL11 promoted HSC activation. Further, global CCL11 deletion ( CCL11-/- ) or HSC/myofibroblast-specific CCL11 knockdown mitigated fibrogenesis in mice. RNA-sequencing revealed that CCL11 might regulate HSC activation by stimulating the transcription of Jagged 1. Reconstitution of Jagged 1 restored the fibrogenic response in CCL11-/- mice. Finally, several targeting strategies that aimed at blockading CCL11 signaling, either by administration of an antagonist to its receptor C-C motif chemokine receptor 3 or neutralizing antibodies against CCL11/C-C motif chemokine receptor 3, ameliorated liver fibrosis in mice. CONCLUSIONS: Our data unveil a previously unrecognized role for CCL11 in liver fibrosis and provide proof-of-concept evidence that targeting CCL11 can be considered as an effective therapeutic approach.


Asunto(s)
Hepatocitos , Cirrosis Hepática , Animales , Ratones , Células Cultivadas , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Proteína Jagged-1/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Receptores de Quimiocina/metabolismo
20.
Front Immunol ; 14: 1328757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38390397

RESUMEN

Introduction: Diabetic nephropathy (DN), distinguished by detrimental changes in the renal glomeruli, is regarded as the leading cause of death from end-stage renal disease among diabetics. Cellular senescence plays a paramount role, profoundly affecting the onset and progression of chronic kidney disease (CKD) and acute kidney injuries. This study was designed to delve deeply into the pathological mechanisms between glomerulus-associated DN and cellular senescence. Methods: Glomerulus-associated DN datasets and cellular senescence-related genes were acquired from the Gene Expression Omnibus (GEO) and CellAge database respectively. By integrating bioinformatics and machine learning methodologies including the LASSO regression analysis and Random Forest, we screened out four signature genes. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic performance of the selected genes. Rigorous experimental validations were subsequently conducted in the mouse model to corroborate the identification of three signature genes, namely LOX, FOXD1 and GJA1. Molecular docking with chlorogenic acids (CGA) was further established not only to validate LOX, FOXD1 and GJA1 as diagnostic markers but also reveal their potential therapeutic effects. Results and discussion: In conclusion, our findings pinpointed three diagnostic markers of glomerulus-associated DN on the basis of cellular senescence. These markers could not only predict an increased risk of DN progression but also present promising therapeutic targets, potentially ushering in innovative treatments for DN in the elderly population.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Animales , Ratones , Humanos , Anciano , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Simulación del Acoplamiento Molecular , Glomérulos Renales/patología , Insuficiencia Renal Crónica/patología , Senescencia Celular/genética , Diabetes Mellitus/patología , Factores de Transcripción Forkhead
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...