Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(22): 26014-26023, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608943

RESUMEN

Although numerous studies on polymeric protective films to stabilize lithium (Li)-metal electrodes have been reported, the construction of self-healing polymers that enables the long-term operation of Li-metal batteries (LMBs) at relatively low temperatures has rarely been demonstrated. Herein, a highly stretchable, autonomous self-healable, and ionic-conducting polymer network (SHIPN) is synthesized as an efficient protective film for LMBs. The network backbone, synthesized from copolymerization of poly(ethylene glycol)-mono-methacrylate (PEGMMA) and 2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BCOE), is chemically cross-linked via diisocyanate. With SHIPN-modified electrodes, enhanced electrochemical performance can be achieved in Li/Cu, Li/Li, and Li/LiFePO4 (Li/LFP) cells. The SHIPN@Li/LFP cell delivers a capacity retention of 85.6% after 500 cycles at 5 °C, resulting from the low-temperature self-healability of SHIPN. In full cells with a high-mass-loading LFP cathode (∼17 mg cm-2), the capacity retention is at least 300% higher than that with a bare Li electrode. Further physical characterizations of electrodes confirm the effect of SHIPN in enhancing the interfacial stability and suppressing Li dendrite growth. Our results will provide insights into rationally designing soft and hybrid materials toward stable LMBs at different temperatures.

2.
Chemistry ; 25(47): 10976-10994, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31041811

RESUMEN

Silicon (Si) is a promising candidate for high-capacity anode materials owing to its high theoretical capacity (3579 mAh g-1 ), low working voltage, and wide natural abundance, although its huge volume variation during charge/discharge processes always results in a short cycling life. Polymer binders play a vital role in improving the cycling performance of Si-based anodes, although traditional polyvinylidene difluoride cannot fulfil the requirements owing to its weak van der Waals forces with the Si surface. Recently, polymer binders constructed by dynamic bonds have been developed, which are reported to allow high-energy-density electrodes with improved electrochemical performance. With dynamic bonds including hydrogen bonding, ionic bonding, and host-guest interactions, these polymer binders possess self-healing capabilities and enhanced mechanical performance, achieving a tremendous advance in addressing the capacity fading of Si-based anodes. In this review, we will summarize the research progress of polymer binders constructed with dynamic bonds, and the challenges for their real applications in advanced Li-ion batteries will also be discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...