Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 11(7): 1486-1494, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36655870

RESUMEN

Silk fibroin (SF) has received interest in tissue engineering owing to its biocompatibility, biodegradability, and favorable mechanical properties. However, the complex preparation, brittleness, and lack of pores in the structure of the silk fibroin film limit its application. Herein, we show that facile dissolution of SF in aqueous phosphoric acid followed by regeneration in aqueous ammonium sulfate ((NH4)2SO4) could afford highly stretchable films with nano-pores formed in the nonsolvent-induced phase separation process. The named phase separation, which determines the morphology and mechanical properties of the regeneration silk fibroin (RSF) films, is highly dependent on the (NH4)2SO4 concentration as well as the initial concentration of the SF solution. Therefore, the RSF films exhibit a tunable pore size ranging from 230 to 510 nm and excellent stretchability with tensile strain up to 143 ± 16%. Most interestingly, the RSF films were shown to support the proliferation of human skin fibroblasts in vitro as well as speed up full-thickness skin wound healing in a rat model. This work establishes an easy and feasible method to access porous RSF membranes that can be used for wound dressing in clinical settings.


Asunto(s)
Fibroínas , Ratas , Humanos , Animales , Fibroínas/química , Porosidad , Cicatrización de Heridas , Regeneración , Ingeniería de Tejidos
2.
Anal Methods ; 14(44): 4474-4484, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36317565

RESUMEN

Rapid and accurate blood glucose detection is significant for diagnosing and treating diabetes. Herein, ultra-low-content gold nanoparticles were loaded on different metal foams and applied to electrochemical enzyme-free glucose sensors via simple displacement reactions. The structures and properties of the produced catalysts were determined by various characterization methods. The performance of the glucose sensor was examined in relation to the interactions between three different metal substrates and gold. The one with the best performance is the sample of gold nanoparticles grown on copper foam (Au300 Cu Foam). It has the advantage of a porous three-dimensional network, a large electroactive surface area, and the high catalytic activity of gold. The combination of Cu and Au increased the valence state of Au, thus favoring the catalytic activity for glucose oxidation. Cyclic voltammetry and chronoamperometry measurements revealed that Au is responsible for the electrocatalytic oxidation of glucose. The sensitivity of Au300 Cu Foam was found to be 10 839 µA mM-1 cm-2 in the linear range of 0.00596-0.0566 mM, with a detection limit (LOD) of 0.223 µM, and 2-3 s response time at 0.4 V vs. Ag/AgCl. The Au300 Cu Foam glucose sensor also offered outstanding stability and anti-interference performance. The prepared Au300 Cu Foam electrode was also successfully applied to detect different levels of glucose in human body fluids, such as saliva. These characteristics make Au300 Cu Foam promising for non-invasive glucose detection.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Oro/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Glucosa/química
3.
Environ Sci Technol ; 56(7): 4050-4061, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35263099

RESUMEN

Compound-specific isotope analysis (CSIA) can reveal mass-transfer limitations during biodegradation of organic pollutants by enabling the detection of masked isotope fractionation. Here, we applied CSIA to monitor the adaptive response of bacterial degradation in inoculated sediment to low contaminant concentrations over time. We characterized Aminobacter sp. MSH1 activity in a flow-through sediment tank in response to a transient supply of elevated 2,6-dichlorobenzamide (BAM) concentrations as a priming strategy and took advantage of an inadvertent intermittence to investigate the effect of short-term flow fluctuations. Priming and flow fluctuations yielded improved biodegradation performance and increased biodegradation capacity, as evaluated from bacterial activity and residual concentration time series. However, changes in isotope ratios in space and over time evidenced that mass transfer became increasingly limiting for degradation of BAM at low concentrations under such stimulated conditions, and that activity decreased further due to bacterial adaptation at low BAM (µg/L) levels. Isotope ratios, in conjunction with residual substrate concentrations, therefore helped identifying underlying limitations of biodegradation in such a stimulated system, offering important insight for future optimization of remediation schemes.


Asunto(s)
Agua Subterránea , Phyllobacteriaceae , Biodegradación Ambiental , Fraccionamiento Químico , Agua Subterránea/química , Isótopos , Phyllobacteriaceae/metabolismo
4.
Small ; 17(46): e2103307, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34655158

RESUMEN

The reduction of the overall electrolysis potential to produce hydrogen is a critical target for fabricating applicable hydrogen evolution cells. Sandwich-structured Fe3 O4 /Au/CoFe-LDH is synthesized via a spontaneous galvanic displacement reaction. A series of structural characterizations indicate the successful synthesis of sandwich-structured Fe3 O4 /Au/CoFe-LDH electrocatalyst. The trace amount of Au laying between Fe3 O4 and CoFe-LDH significantly improves the intrinsic conductivity and catalytic activity of the composite catalyst. In-depth investigations indicate that Fe3 O4 and CoFe-LDH are responsible for the electrocatalytic hydrogen evolution reaction (HER) whereas Au is responsible for the electrocatalytic glucose oxidation (GOR). The electrocatalytic tests indicate Fe3 O4 /Au/CoFe-LDH offers excellent electrocatalytic activity and stability for both HER and GOR, even at high current density (i.e., 1000 mA cm-2 ). Further electrochemistry examinations in a two-compartment cell with a two-electrode configuration show that Fe3 O4 /Au/CoFe-LDH can significantly reduce the overall potential for this asymmetrical cell, with only 0.48 and 0.89 V required to achieve 10 mA cm-2 current density with and without iR-compensation, which is the lowest overall potential requirement ever reported. The design and synthesis of Fe3 O4 /Au/CoFe-LDH pave a new way to electrochemically produce hydrogen and gluconate under extremely low cell voltage, which can readily match with a variety of solar cells.

5.
Environ Sci Technol ; 55(11): 7386-7397, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33970610

RESUMEN

Organic contaminant degradation by suspended bacteria in chemostats has shown that isotope fractionation decreases dramatically when pollutant concentrations fall below the (half-saturation) Monod constant. This masked isotope fractionation implies that membrane transfer is slow relative to the enzyme turnover at µg L-1 substrate levels. Analogous evidence of mass transfer as a bottleneck for biodegradation in aquifer settings, where microbes are attached to the sediment, is lacking. A quasi-two-dimensional flow-through sediment microcosm/tank system enabled us to study the aerobic degradation of 2,6-dichlorobenzamide (BAM), while collecting sufficient samples at the outlet for compound-specific isotope analysis. By feeding an anoxic BAM solution through the center inlet port and dissolved oxygen (DO) above and below, strong transverse concentration cross-gradients of BAM and DO yielded zones of low (µg L-1) steady-state concentrations. We were able to simulate the profiles of concentrations and isotope ratios of the contaminant plume using a reactive transport model that accounted for a mass-transfer limitation into bacterial cells, where apparent isotope enrichment factors *ε decreased strongly below concentrations around 600 µg/L BAM. For the biodegradation of organic micropollutants, mass transfer into the cell emerges as a bottleneck, specifically at low (µg L-1) concentrations. Neglecting this effect when interpreting isotope ratios at field sites may lead to a significant underestimation of biodegradation.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Isótopos de Carbono , Fraccionamiento Químico , Isótopos/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 55(8): 4772-4782, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33729766

RESUMEN

Determining whether aqueous diffusion and dispersion lead to significant isotope fractionation is important for interpreting the isotope ratios of organic contaminants in groundwater. We performed diffusion experiments with modified Stokes diaphragm cells and transverse-dispersion experiments in quasi-two-dimensional flow-through sediment tank systems to explore isotope fractionation for benzene, toluene, ethylbenzene, 2,6-dichlorobenzamide, and metolachlor at natural isotopic abundance. We observed very small to negligible diffusion- and transverse-dispersion-induced isotope enrichment factors (ε < -0.4 ‰), with changes in carbon and nitrogen isotope values within ±0.5‰ and ±1‰, respectively. Isotope effects of diffusion did not show a clear correlation with isotopologue mass with calculated power-law exponents ß close to zero (0.007 < ß < 0.1). In comparison to ions, noble gases, and labeled compounds, three aspects stand out. (i) If a mass dependence is derived from collision theory, then isotopologue masses of polyatomic molecules would be affected by isotopes of multiple elements resulting in very small expected effects. (ii) However, collisions do not necessarily lead to translational movement but can excite molecular vibrations or rotations minimizing the mass dependence. (iii) Solute-solvent interactions like H-bonds can further minimize the effect of collisions. Modeling scenarios showed that an inadequate model choice, or erroneous choice of ß, can greatly overestimate the isotope fractionation by diffusion and, consequently, transverse dispersion. In contrast, available data for chlorinated solvent and gasoline contaminants at natural isotopic abundance suggest that in field scenarios, a potential additional uncertainty from aqueous diffusion or dispersion would add to current instrumental uncertainties on carbon or nitrogen isotope values (±1‰) with an additional ±1‰ at most.


Asunto(s)
Agua Subterránea , Biodegradación Ambiental , Isótopos de Carbono/análisis , Fraccionamiento Químico , Difusión , Tolueno , Agua
7.
Front Oncol ; 10: 570080, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194659

RESUMEN

Purpose: Drug-induced fever is frequently reported in cancer patients treated with anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), and stoppage of the offending agent is the management of choice. However, given the complex management of cancer patients, this needs to be carefully studied. Therefore, we conducted a meta-analysis to estimate the risk of fever associated with anti-PD-1/PD-L1 in cancer patients. Methods: From May 2010 to 2020, an electronic search was conducted through PubMed for relevant studies. All clinical trials reporting fever in cancer patients treated with PD-1/PD-L1 inhibitors were included, while other designs were excluded. A manual search was also conducted to search for relevant articles. Outcomes included the risk of pyrexia and febrile neutropenia in the overall population and based on the grade of fever (all grades vs. grades 3-5). The Newcastle-Ottawa Scale was used to assess the quality of included studies. Results: Thirty-one articles, involving 27 clinical trials and 15,867 participants, were included. The increased risk of pyrexia for all grades is only found when PD-1/PD-L1 plus cytotoxic T lymphocyte-associated protein 4 (CTLA-4) was compared to CTLA-4 [odds ratio (OR) = 2.48, 95% CI: 1.17, 5.23]. The risk of febrile neutropenia for all-grade fever was significantly lower in the PD-1/PD-L1 group compared to that of chemotherapy alone (OR = 0.02, 95% CI: 0.01, 0.05). A similar trend in the risk of febrile neutropenia was also found for grades 3-5 (OR = 0.02, 95% CI: 0.01, 0.05). Conclusion: The increased risk of pyrexia for all grades could only be found when PD-1/PD-L1 plus CTLA-4 was compared with CTLA-4. Meanwhile, compared to chemotherapy, PD-1/PD-L1 inhibitors reduced the risk of febrile neutropenia.

8.
Dalton Trans ; 49(4): 988-992, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31912814

RESUMEN

Electrocatalytic nitrogen fixation under ambient temperature and pressure has always been considered crucial in the ammonia industry. In this study, MoP nanoparticles were evenly grown on few-layered reduced graphene oxide (MoP@rGO) and served as an efficient electrocatalyst for NRR. The MoP@rGO electrocatalyst showed an excellent NRR activity with a high average NH3 yield of 7.5 µg h-1 mg-1cat (at -0.6 V vs. RHE) and high faradaic efficiency of 9.1% (at -0.5 V vs. RHE). The excellent catalytic activity and stability of MoP@rGO originated from the increased rate of electron transfer between MoP and rGO, enlarged active surface area, synergetic effect between MoP and rGO, and excellent chemical stability. This study thus opens an alternative route towards NRR electrocatalysis.

9.
Sensors (Basel) ; 19(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277330

RESUMEN

Hierarchical Ni-Co double transition metal hydroxide nanosheets have been explored as an effective strategy for the design of nonenzymatic glucose sensors. Ni-Co hydroxide nanosheets constructed hollow cubes were successfully synthesized by using Cu2O cubes as templates and subsequently etched by Na2S2O3 to achieve a hollow cubic structure. The molar ratio between Ni and Co was tuned by varying the precursor ratio of NiCl2 and CoCl2. It was observed by transmission electron microscopy (TEM) that the increasing Ni precursor resulted in particle morphology, and the increasing ratio of the Co precursor resulted in more lamellar morphology. The sample with the composition of Ni0.7Co0.3(OH)2 displayed the best performance for glucose sensing with high selectivity (1541 µA mM-1 cm-2), low detection limit (3.42 µM with S/N = 3), and reasonable selectivity. Similar strategies could be applied for the design of other electrode materials with high efficiency for nonenzymatic glucose determination.


Asunto(s)
Cobalto/química , Técnicas Electroquímicas/instrumentación , Glucosa/análisis , Nanoestructuras/química , Níquel/química , Cobre/química , Técnicas Electroquímicas/métodos , Electrodos , Hidróxidos/química , Límite de Detección , Microscopía Electrónica de Transmisión , Difracción de Rayos X
10.
Environ Toxicol ; 30(9): 1014-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24596333

RESUMEN

Tetrabromobisphenol A (TBBPA), a brominated flame retardant, is detected commonly in aquatic environments, where it is thought to be highly toxic to the development of aquatic life. In this study, zebrafish embryos and larvae were used to investigate the protective effects of puerarin after exposure to TBBPA. Malformation, blood flow disorders, pericardial edema, and spawn coagulation rates increased, whereas survival decreased significantly after exposure to 0.5 and 1.0 mg L(-1) TBBPA. The measured indices of morphological toxicity improved after treatment with puerarin. TBBPA also induced reactive oxygen species (ROS) production in a dose-dependent manner. Acridine orange staining results revealed that TBBPA exposure caused cardiomyocyte apoptosis and induced the expression of three proapoptotic genes: P53, Bax, and Caspase9. In contrast, the expression of the antiapoptotic gene Bcl2 was down-regulated. When genes related to cardiac development were assessed, the expression of Tbx1, Raldh2, and Bmp2b changed after exposure to the combination of TBBPA and puerarin. These results suggest that TBBPA induces cardiomyocyte apoptosis and ROS production, resulting in cardiac developmental toxicity in zebrafish embryos or larvae. Therefore, puerarin regulates the expression of cardiac developmental genes, such as Tbx1, Bmp2b, and Raldh2 by inhibiting ROS production, and subsequently modulates cardiac development after the exposure of zebrafish larvae to TBBPA.


Asunto(s)
Apoptosis/efectos de los fármacos , Isoflavonas/farmacología , Bifenilos Polibrominados/toxicidad , Sustancias Protectoras/farmacología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Caspasa 9/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Retardadores de Llama/toxicidad , Larva/efectos de los fármacos , Larva/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Retinal-Deshidrogenasa/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...