Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632343

RESUMEN

Plasmodium falciparum artemisinin (ART) resistance is driven by mutations in kelch-like protein 13 (PfK13). Quiescence, a key aspect of resistance, may also be regulated by a yet unidentified epigenetic pathway. Transfer RNA modification reprogramming and codon bias translation is a conserved epitranscriptomic translational control mechanism that allows cells to rapidly respond to stress. We report a role for this mechanism in ART-resistant parasites by combining tRNA modification, proteomic and codon usage analyses in ring-stage ART-sensitive and ART-resistant parasites in response to drug. Post-drug, ART-resistant parasites differentially hypomodify mcm5s2U on tRNA and possess a subset of proteins, including PfK13, that are regulated by Lys codon-biased translation. Conditional knockdown of the terminal s2U thiouridylase, PfMnmA, in an ART-sensitive parasite background led to increased ART survival, suggesting that hypomodification can alter the parasite ART response. This study describes an epitranscriptomic pathway via tRNA s2U reprogramming that ART-resistant parasites may employ to survive ART-induced stress.

2.
Front Neurosci ; 18: 1372297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572146

RESUMEN

Introduction: The study of the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. Methods: The humanized APPNL-G-F knock-in mouse line was crossed to the PS19 MAPTP301S, over-expression mouse line to create the dual APPNL-G-F/PS19 MAPTP301S line. The resulting pathologies were characterized by immunochemical methods and PCR. Results: We now report on a double transgenic APPNL-G-F/PS19 MAPTP301S mouse that at 6 months of age exhibits robust A plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of A pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. MAPT pathology neither changed levels of amyloid precursor protein nor potentiated A accumulation. Interestingly, study of immunofluorescence in cleared brains indicates that microglial inflammation was generally stronger in the hippocampus, dentate gyrus and entorhinal cortex, which are regions with predominant MAPT pathology. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. m6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Discussion: Our understanding of the pathophysiology of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. The APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging, and thus represents a useful new mouse model for the field.

3.
J Bacteriol ; 206(4): e0045223, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38551342

RESUMEN

The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.


Asunto(s)
Escherichia coli K12 , ARN de Transferencia , Humanos , ARN de Transferencia/genética , Escherichia coli K12/genética , Bacterias/genética , Metilación , Bacterias Grampositivas/genética
4.
BMC Public Health ; 24(1): 688, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438971

RESUMEN

BACKGROUND: The COVID-19 pandemic has significantly increased the risk of burnout among frontline nurses. However, the prevalence of burnout and its associated factors in the post-pandemic era remain unclear. This research aims to investigate burnout prevalence among frontline nurses in the post-pandemic period and pinpoint associated determinants in China. METHODS: From April to July 2023, a cross-sectional study was carried out across multiple centers, focusing on frontline nurses who had been actively involved in the COVID-19 pandemic. The data collection was done via an online platform. The Maslach Burnout Inventory-Human Services Survey was utilized to evaluate symptoms of burnout. A multivariable logistic regression analysis was used to pinpoint factors associated with burnout. RESULTS: Of the 2210 frontline nurses who participated, 75.38% scored over the cut-off for burnout. Multivariable logistic regression revealed that factors like being female [odds ratio (OR) = 0.41, 95%CI = 0.29-0.58] and exercising 1-2 times weekly[OR = 0.53, 95%CI = 0.42-0.67] were protective factors against burnout. Conversely, having 10 or more night shifts per month[OR = 1.99, 95%CI = 1.39-2.84], holding a master's degree or higher[OR = 2.86, 95% CI = 1.59-5.15], poor health status[OR = 2.43, 95% CI = 1.93-3.08] and [OR = 2.82, 95%CI = 1.80-4.43], under virus infection[OR = 7.12, 95%CI = 2.10-24.17], and elevated work-related stress[OR = 1.53, 95% CI = 1.17-2.00] were all associated with an elevated risk of burnout. CONCLUSION: Our findings indicate that post-pandemic burnout among frontline nurses is influenced by several factors, including gender, monthly night shift frequency, academic qualifications, weekly exercise frequency, health condition, and viral infection history. These insights can inform interventions aimed at safeguarding the mental well-being of frontline nurses in the post-pandemic period.


Asunto(s)
COVID-19 , Pandemias , Pruebas Psicológicas , Autoinforme , Femenino , Humanos , Masculino , Estudios Transversales , COVID-19/epidemiología , Agotamiento Psicológico/epidemiología
5.
Front Microbiol ; 15: 1369018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544857

RESUMEN

Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens-Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. Bartonella quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.

6.
Adv Healthc Mater ; : e2303374, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366905

RESUMEN

Orthopedic prostheses are the ultimate therapeutic solution for various end-stage orthopedic conditions. However, aseptic loosening and pyogenic infections remain as primary complications associated with these devices. In this study, a hierarchical titanium dioxide (TiO2 ) nanotube drug delivery system loaded with cinnamaldehyde for the surface modification of titanium implants, is constructed. These specially designed dual-layer TiO2 nanotubes enhance material reactivity and provide an extensive drug-loading platform within a short time. The introduction of cinnamaldehyde enhances the bone integration performance of the scaffold (simultaneously promoting bone formation and inhibiting bone resorption), anti-inflammatory capacity, and antibacterial properties. In vitro experiments have demonstrated that this system promoted osteogenesis by upregulating both Wnt/ß-catenin and MAPK signaling pathways. Furthermore, it inhibits osteoclast formation, suppresses macrophage-mediated inflammatory responses, and impedes the proliferation of Staphylococcus aureus and Escherichia coli. In vivo experiments shows that this material enhances bone integration in a rat model of femoral defects. In addition, it effectively enhances the antibacterial and anti-inflammatory properties in a subcutaneous implant in a rat model. This study provides a straightforward and highly effective surface modification strategy for orthopedic Ti implants.

7.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405984

RESUMEN

Mitochondrial stress and dysfunction play important roles in many pathologies. However, how cells respond to mitochondrial stress is not fully understood. Here, we examined the translational response to electron transport chain (ETC) inhibition and arsenite induced mitochondrial stresses. Our analysis revealed that during mitochondrial stress, tRNA modifications (namely f5C, hm5C, queuosine and its derivatives, and mcm5U) dynamically change to fine tune codon decoding, usage, and optimality. These changes in codon optimality drive the translation of many pathways and gene sets, such as the ATF4 pathway and selenoproteins, involved in the cellular response to mitochondrial stress. We further examined several of these modifications using targeted approaches. ALKBH1 knockout (KO) abrogated f5C and hm5C levels and led to mitochondrial dysfunction, reduced proliferation, and impacted mRNA translation rates. Our analysis revealed that tRNA queuosine (tRNA-Q) is a master regulator of the mitochondrial stress response. KO of QTRT1 or QTRT2, the enzymes responsible for tRNA-Q synthesis, led to mitochondrial dysfunction, translational dysregulation, and metabolic alterations in mitochondria-related pathways, without altering cellular proliferation. In addition, our analysis revealed that tRNA-Q loss led to a domino effect on various tRNA modifications. Some of these changes could be explained by metabolic profiling. Our analysis also revealed that utilizing serum deprivation or alteration with Queuine supplementation to study tRNA-Q or stress response can introduce various confounding factors by altering many other tRNA modifications. In summary, our data show that tRNA modifications are master regulators of the mitochondrial stress response by driving changes in codon decoding.

8.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260440

RESUMEN

Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens- Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana . Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. B. quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.

9.
Heliyon ; 10(1): e23589, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187270

RESUMEN

Inflammatory macrophages within the synovium play a pivotal role in the progression of arthritis inflammation. Effective drug therapy targeting inflammatory macrophages has long been a goal for clinicians and researchers. The standard approach for treating osteoarthritis (OA) involves systemic treatment and local injection. However, the high incidence of side effects associated with long-term drug administration increases the risk of complications in patients. Additionally, the rapid clearance of the joint cavity poses a biological barrier to the therapeutic effect. NADPH oxidase 4 (NOX4) is an enzyme protein regulating the cellular redox state by generating reactive oxygen species (ROS) within the cell. In this study, we designed and fabricated a hydrogel microsphere consisting of methyl methacrylate (MMA) and polyvinyl acetate (PVA) as the outer layer structure. We then loaded GLX351322 (GLX), a novel selective NOX4 inhibitor, into hydrogel microspheres through self-assembly with the compound polyethylene glycol ketone mercaptan (mPEG-TK) containing a disulfide bond, forming nanoparticles (mPEG-TK-GLX), thus creating a two-layer drug-loaded microspheres capsule with ROS-responsive and slow-releasing capabilities. Our results demonstrate that mPEG-TK-GLX@PVA-MMA effectively suppressed TBHP-induced inflammation, ROS production, and ferroptosis, indicating a promising curative strategy for OA and other inflammatory diseases in the future.

10.
bioRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38106016

RESUMEN

Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: 1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and 2) Queuosine Precursor Transporter (QPTR), a transporter protein that imports Q precursors. Organisms like the facultative intracellular pathogen Bartonella henselae, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, mass spectrometry analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae bTGT and QPTR not only utilize preQ1, akin to their Escherichia coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens-from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 has fitness advantages when B. henselae is growing outside a mammalian host.

12.
G3 (Bethesda) ; 13(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655917

RESUMEN

RNA undergoes complex posttranscriptional processing including chemical modifications of the nucleotides. The resultant-modified nucleotides are an integral part of RNA sequences that must be considered in studying the biology of RNA and in the design of RNA therapeutics. However, the current "RNA-sequencing" methods primarily sequence complementary DNA rather than RNA itself, which means that the modifications present in RNA are not captured in the sequencing results. Emerging direct RNA-sequencing technologies, such as those offered by Oxford Nanopore, aim to address this limitation. In this study, we synthesized and used Nanopore technology to sequence RNA transcripts consisting of canonical nucleotides and 10 different modifications in various concentrations. The results show that direct RNA sequencing still has a baseline error rate of >10%, and although some modifications can be detected, many remain unidentified. Thus, there is a need to develop sequencing technologies and analysis methods that can comprehensively capture the total complexity of RNA. The RNA sequences obtained through this project are made available for benchmarking analysis methods.


Asunto(s)
Nanoporos , Nucleótidos , Nucleótidos/genética , Análisis de Secuencia de ADN/métodos , Tecnología , ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN
13.
Biochem Pharmacol ; 215: 115704, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536474

RESUMEN

Inbonemetabolism,osteoclastsare the only cellscapableofresorbingbone. Hyperactivity of osteoclasts may lead to osteolytic disease like osteoporosis and arthritis. Although there are several drugs for the treatment of osteolytic diseases, they have limitations and a variety of side effects. An inhibitor of Janus kinase (JAK), XL019, has shown promising results in the treatment of myelofibrosis and other cancers. But whether it can functionally impact osteoclast activity has not been proven. In this study, the effects of XL019 on osteoclastogenesis and the mechanism pathway were investigated in vitro. It was found that XL019 could impair osteoclasts formation, interfere with bone resorption ability and downregulate the osteoclast-specific genes and proteins expression. Furthermore, Western blot and molecular docking studies demonstrated that XL019 inhibited RANKL-induced osteoclastogenesis by suppressing MAPK signaling. A molecular docking analysis explained how XL019 binds to MAPK pathway factors. In addition, titanium particles induced calvarial osteolysis in mice further confirming its beneficial effect on bone homeostasis in vivo. In conclusion, this study demonstrates that Osteoclastactivity canbeeffectivelyinhibitedby XL019viaMAPK signalingpathway,making it a promising alternative pharmacologicaltreatmentfor bone metabolicdisorders.


Asunto(s)
Resorción Ósea , Inhibidores de las Cinasas Janus , Osteólisis , Animales , Ratones , Osteoclastos , Inhibidores de las Cinasas Janus/farmacología , Simulación del Acoplamiento Molecular , Transducción de Señal , Resorción Ósea/inducido químicamente , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Osteogénesis , Osteólisis/metabolismo , Ligando RANK/farmacología , Diferenciación Celular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo
14.
Res Sq ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292629

RESUMEN

The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular ß-amyloid (Aß) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aß plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aß pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aß accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.

15.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298492

RESUMEN

One of the main obstacles in biocatalysis is the substrate inhibition (SI) of enzymes that play important roles in biosynthesis and metabolic regulation in organisms. The promiscuous glycosyltransferase UGT72AY1 from Nicotiana benthamiana is strongly substrate-inhibited by hydroxycoumarins (inhibitory constant Ki < 20 µM), but only weakly inhibited when monolignols are glucosylated (Ki > 1000 µM). Apocarotenoid effectors reduce the inherent UDP-glucose glucohydrolase activity of the enzyme and attenuate the SI by scopoletin derivatives, which could also be achieved by mutations. Here, we studied the kinetic profiles of different phenols and used the substrate analog vanillin, which has shown atypical Michaelis-Menten kinetics in previous studies, to examine the effects of different ligands and mutations on the SI of NbUGT72AY1. Coumarins had no effect on enzymatic activity, whereas apocarotenoids and fatty acids strongly affected SI kinetics by increasing the inhibition constant Ki. Only the F87I mutant and a chimeric version of the enzyme showed weak SI with the substrate vanillin, but all mutants exhibited mild SI when sinapaldehyde was used as an acceptor. In contrast, stearic acid reduced the transferase activity of the mutants to varying degrees. The results not only confirm the multi-substrate functionality of NbUGT72AY1, but also reveal that the enzymatic activity of this protein can be fine-tuned by external metabolites such as apocarotenoids and fatty acids that affect SI. Since these signals are generated during plant cell destruction, NbUGT72AY1 likely plays an important role in plant defense by participating in the production of lignin in the cell wall and providing direct protection through the formation of toxic phytoalexins.


Asunto(s)
Benzaldehídos , Glucosiltransferasas , Cinética , Glucosiltransferasas/metabolismo , Ácidos Grasos , Especificidad por Sustrato
16.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034774

RESUMEN

The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular ß-amyloid (Aß) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aß plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aß pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aß accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.

17.
New Phytol ; 238(5): 2080-2098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36908092

RESUMEN

Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.


Asunto(s)
Glicosiltransferasas , Lignina , Glicosiltransferasas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Carotenoides/metabolismo , Nicotiana/metabolismo
18.
Clin Chem Lab Med ; 61(6): 999-1004, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36709503

RESUMEN

OBJECTIVES: This study aims to develop a novel library preparation method, plasma to library express technology (PLET), to construct next-generation sequencing (NGS) libraries directly from plasma without cell-free DNA (cfDNA) isolation. METHODS: Peripheral blood samples (600) were obtained from a retrospective cohort of 300 pregnant women prior to invasive diagnostic testing. The samples were subsequently distributed between library preparation methodologies, with 300 samples prepared by PLET and 300 by conventional methods for non-invasive prenatal testing (NIPT) to screen for common trisomies using low-pass whole genome next generation sequencing. RESULTS: NIPT conducted on PLET libraries demonstrated comparable metrics to libraries prepared using conventional methods, including 100% sensitivity and specificity. CONCLUSIONS: Our study demonstrates the potential utility of PLET in the clinical setting and highlights its significant advantages, including dramatically reduced process complexity and markedly decreased turnaround time.


Asunto(s)
Pruebas Genéticas , Diagnóstico Prenatal , Embarazo , Femenino , Humanos , Diagnóstico Prenatal/métodos , Estudios Retrospectivos , Pruebas Genéticas/métodos , Sensibilidad y Especificidad
19.
Plant Commun ; 4(3): 100506, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36566353

RESUMEN

Uridine diphosphate-dependent glycosyltransferases (UGTs) mediate the glycosylation of plant metabolites, thereby altering their physicochemical properties and bioactivities. Plants possess numerous UGT genes, with the encoded enzymes often glycosylating multiple substrates and some exhibiting substrate inhibition kinetics, but the biological function and molecular basis of these phenomena are not fully understood. The promiscuous monolignol/phytoalexin glycosyltransferase NbUGT72AY1 exhibits substrate inhibition (Ki) at 4 µM scopoletin, whereas the highly homologous monolignol StUGT72AY2 is inhibited at 190 µM. We therefore used hydrogen/deuterium exchange mass spectrometry and structure-based mutational analyses of both proteins and introduced NbUGT72AY1 residues into StUGT72AY2 and vice versa to study promiscuity and substrate inhibition of UGTs. A single F87I and chimeric mutant of NbUGT72AY1 showed significantly reduced scopoletin substrate inhibition, whereas its monolignol glycosylation activity was almost unaffected. Reverse mutations in StUGT72AY2 resulted in increased scopoletin glycosylation, leading to enhanced promiscuity, which was accompanied by substrate inhibition. Studies of 3D structures identified open and closed UGT conformers, allowing visualization of the dynamics of conformational changes that occur during catalysis. Previously postulated substrate access tunnels likely serve as drainage channels. The results suggest a two-site model in which the second substrate molecule binds near the catalytic site and blocks product release. Mutational studies showed that minor changes in amino acid sequence can enhance the promiscuity of the enzyme and add new capabilities such as substrate inhibition without affecting existing functions. The proposed subfunctionalization mechanism of expanded promiscuity may play a role in enzyme evolution and highlights the importance of promiscuous enzymes in providing new functions.


Asunto(s)
Fitoalexinas , Escopoletina , Escopoletina/metabolismo , Glicosilación , Glicosiltransferasas/química , Plantas/metabolismo
20.
bioRxiv ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38187551

RESUMEN

The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance: The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...