Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Ophthalmol ; 17(3): 466-472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721508

RESUMEN

AIM: To investigate the molecular diagnosis of a three-generation Chinese family affected with aniridia, and further to identify clinically a PAX6 missense mutation in members with atypical aniridia. METHODS: Eleven family members with and without atypical aniridia were recruited. All family members underwent comprehensive ophthalmic examinations. A combination of whole exome sequencing (WES) and direct Sanger sequencing were performed to uncover the causative mutation. RESULTS: Among the 11 family members, 8 were clinically diagnosed with congenital aniridia (atypical aniridia phenotype). A rare heterozygous mutation c.622C>T (p.Arg208Trp) in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects. CONCLUSION: A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia. This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia, which may also contribute to genetic counselling and family planning.

2.
BMC Ophthalmol ; 23(1): 446, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37932670

RESUMEN

INTRODUCTION: Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is a rare genetic disease with diverse ocular malformations. This study aimed to investigate the disease-causing gene in members of a BPES pedigree presenting with the rare features of anisometropia, unilateral pathologic myopia (PM), and congenital cataracts. METHODS: The related BPES patients underwent a comprehensive ocular examination. Next, whole-exome sequencing (WES) was performed to screen for the disease-causing genetic variants. A step-wise variant filtering was performed to select candidate variants combined with the annotation of the variant's pathogenicity, which was assessed using several bioinformatic approaches. Co-segregation analysis and Sanger sequencing were then conducted to validate the candidate variant. RESULTS: The variant c.672_701dup in FOXL2 was identified to be the disease-causing variant in this rare BPES family. Combined with clinical manifestations, the two affected individuals were diagnosed with type II BPES. CONCLUSION: This study uncovered the variant c.672_701dup in FOXL2 as a disease causal variant in a rare-presenting BPES family with anisometropia, unilateral pathogenic myopia, and/or congenital cataracts, thus expanding the phenotypic spectrum of FOXL2.


Asunto(s)
Anisometropía , Blefarofimosis , Catarata , Miopía , Humanos , Mutación , Secuenciación del Exoma , Linaje , Síndrome , Proteína Forkhead Box L2/genética
3.
BMC Ophthalmol ; 22(1): 70, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148715

RESUMEN

BACKGROUND: Congenital cataract-microcornea syndrome (CCMC) is characterized by the association of congenital cataract and microcornea without any other systemic anomaly or dysmorphism. Although several causative genes have been reported in patients with CCMC, the genetic etiology of CCMC is yet to be clearly understood. PURPOSE: To unravel the genetic cause of autosomal dominant family with CCMC. METHODS: All patients and available family members underwent a comprehensive ophthalmologic clinical examination in the hospital by expert ophthalmologists and carried out to clinically diagnosis. All the patients were screened by whole-exome sequencing and then validated using co-segregation by Sanger sequencing. RESULTS: Four CCMC patients from a Chinese family and five unaffected family members were enrolled in this study. Using whole-exome sequencing, a missense mutation c.295G > T (p.A99S, NM_003106.4) in the SOX2 gene was identified and validated by segregation analysis. In addition, this missense mutation was predicted to be damaging by multiple predictive tools. Variant p.Ala99Ser was located in a conservation high mobility group (HMG)-box domain in SOX2 protein, with a potential pathogenic impact of p.Ala99Ser on protein level. CONCLUSIONS: A novel missense mutation (c.295G > T, p.Ala99Ser) in the SOX2 gene was found in this Han Chinese family with congenital cataract and microcornea. Our study determined that mutations in SOX2 were associated with CCMC, warranting further investigations on the pathogenesis of this disorder. This result expands the mutation spectrum of SOX2 and provides useful information to study the molecular pathogenesis of CCMC.


Asunto(s)
Catarata , Catarata/genética , Enfermedades de la Córnea , Análisis Mutacional de ADN , Humanos , Mutación , Mutación Missense , Linaje , Fenotipo , Factores de Transcripción SOXB1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...