Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 132885, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838894

RESUMEN

Fructose 1,6-bisphosphate aldolase (FBA) is a pivotal enzyme, which plays a critical role in fixing CO2 through the process of in the Calvin cycle. In this study, a comprehensive exploration of the FBA family genes in moso bamboo (Phyllostachys edulis) was conducted by the bioinformatics and biological analyses. A total of nine FBA genes (PeFBA1-PeFBA9) were identified in the moso bamboo genome. The expression patterns of PeFBAs across diverse tissues of moso bamboo suggested that they have multifaceted functionality. Notably, PeFBA8 might play an important role in regulating photosynthetic carbon metabolism. Co-expression and cis-element analyses demonstrated that PeFBA8 was regulated by a photosynthetic regulatory transcription factor (PeGLK1), which was confirmed by yeast one-hybrid and dual-luciferase assays. In-planta gene editing analysis revealed that the edited PeFBA8 mutants displayed compromised photosynthetic functionality, characterized by reduced electron transport rate and impaired photosystem I, leading to decreased photosynthesis rate overall, compared to the unedited control. The recombinant protein of PeFBA8 from prokaryotic expression exhibited enzymatic catalytic function. The findings suggest that the expression of PeFBA8 can affect photosynthetic efficiency of moso bamboo leaves, which underlines the potential of leveraging PeFBA8's regulatory mechanism to breed bamboo varieties with enhanced carbon fixation capability.

2.
New Phytol ; 243(1): 195-212, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708439

RESUMEN

Water plays crucial roles in expeditious growth and osmotic stress of bamboo. Nevertheless, the molecular mechanism of water transport remains unclear. In this study, an aquaporin gene, PeTIP4-3, was identified through a joint analysis of root pressure and transcriptomic data in moso bamboo (Phyllostachys edulis). PeTIP4-3 was highly expressed in shoots, especially in the vascular bundle sheath cells. Overexpression of PeTIP4-3 could increase drought and salt tolerance in transgenic yeast and rice. A co-expression pattern of PeSAPK4, PeMYB99 and PeTIP4-3 was revealed by WGCNA. PeMYB99 exhibited an ability to independently bind to and activate PeTIP4-3, which augmented tolerance to drought and salt stress. PeSAPK4 could interact with and phosphorylate PeMYB99 in vivo and in vitro, wherein they synergistically accelerated PeTIP4-3 transcription. Overexpression of PeMYB99 and PeSAPK4 also conferred drought and salt tolerance in transgenic rice. Further ABA treatment analysis indicated that PeSAPK4 enhanced water transport in response to stress via ABA signaling. Collectively, an ABA-mediated cascade of PeSAPK4-PeMYB99-PeTIP4-3 is proposed, which governs water transport in moso bamboo.


Asunto(s)
Acuaporinas , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantas Modificadas Genéticamente , Agua , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Agua/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Acuaporinas/metabolismo , Acuaporinas/genética , Transporte Biológico , Poaceae/genética , Poaceae/fisiología , Modelos Biológicos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Tolerancia a la Sal/genética , Fosforilación , Unión Proteica/efectos de los fármacos , Estrés Fisiológico
3.
BMC Genom Data ; 25(1): 34, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528505

RESUMEN

BACKGROUND: Calamus tetradactylus, a species primarily distributed in Vietnam, Laos, and southern China, is highly valued for its utilization as a small-diameter rattan material. While its physical and mechanical properties have been extensively studied, the genomic characteristics of C. tetradactylus remain largely unexplored. RESULTS: To gain a better understanding of its chloroplast genomic features and evolutionary relationships, we conducted sequencing and assembly of the chloroplast genome of C. tetradactylus. The complete chloroplast genome exhibited the typical highly conserved quartile structure, with specific variable regions identified in the single-copy region (like psbF-psbE, π = 0.10327, ndhF-rpl32, π = 0.10195), as well as genes such as trnT-GGU (π = 0.05764) and ycf1 (π = 0.03345) and others. We propose that these regions and genes hold potential as markers for species identification. Furthermore, phylogenetic analysis revealed that C. tetradactylus formed a distinct clade within the phylogenetic tree, alongside other Calamus species, and C. tetradactylus was most closely related to C. walkeri, providing support for the monophyly of the genus. CONCLUSION: The analysis of the chloroplast genome conducted in this study provides valuable insights that can contribute to the improvement of rattan breeding programs and facilitate sustainable development in the future.


Asunto(s)
Calamus , Genoma del Cloroplasto , Filogenia , Calamus/genética , Genoma del Cloroplasto/genética , Fitomejoramiento , Genómica
4.
Expert Rev Clin Pharmacol ; 17(1): 101-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069611

RESUMEN

OBJECTIVE: This study aimed to explore a comprehensive empirical investigation and assess SCARs related to valaciclovir or acyclovir based on FAERS database from FDA, thus providing a theoretical foundation for the rational application of drugs in clinic. METHODS: SCARs reports relevant to valaciclovir or acyclovir were searched in FAERS database from the 2004 Q1 to 2023 Q2. These data were further mined by a proportional analysis and Bayesian approach to detect signals of SCARs caused by two drugs. Meanwhile, the clinical characteristics, onset time, correlation, and stratification analysis of the two drugs in SCARs were analyzed. RESULTS: Both drugs exhibited positive signals for drug reaction with DRESS, AGEP, TEN, SJS-TEN overlap and SJS. The median onset time of SCARs caused by valaciclovir or acyclovir was 30 days vs 10 day for DRESS, 11 days vs 9 days for AGEP, 17 days vs 12 days (TEN) and 12 days vs 8 days (SJS). Excluding the effect of combinational drugs, there was an association between the two antiviral drugs and SCARs. CONCLUSION: By analyzing the FAERS database, the risk trends of SCARs caused by valaciclovir or acyclovir have been identified, providing valuable insights to recognize various types of SCARs in clinics.


Asunto(s)
Aciclovir , Cicatriz , Humanos , Aciclovir/efectos adversos , Valaciclovir/efectos adversos , Cicatriz/inducido químicamente , Teorema de Bayes , Valina/efectos adversos , Antivirales/efectos adversos
5.
Chemistry ; 30(10): e202303157, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38019179

RESUMEN

Lithium-sulfur batteries demonstrate enormous energy density are promising forms of energy storage. Unfortunately, the slow redox kinetics and polysulfides shuttle effect are some of the factors that prevent the its development. To address these issues, the hybrid membrane with combination of nickel diselenide nanosheets modified carbon nanotubes (NSN@CNTs) and utilized Li2 S6 catholyte for lithium sulfur battery. The conductive CNTs facilitates fast electronic/ionic transport, while the polarity of NSN as a strong affinity to lithium polysulfides, effectively anchoring them, facilitating the redox conversion of polysulfide species, and effectively diminishing reaction barriers. The cell with NSN@CNTs delivers the first discharge capacity of 1123.8 mAh g-1 and maintains 786.5 mAh g-1 after 300 cycles (0.2 C) at the sulfur loading 5.4 mg. Its rate capability is commendable, enabling it to sustain a capacity of 559.8 mAh g-1 even at a high discharge rate of 2 C. In addition, its initial discharge capacity can remain 8.33 mAh even at 10.8 mg for duration of 100 cycles. This research indicates the potential application of NSN@CNTs hybrid materials in lithium-sulfur batteries.

6.
Prog Neurobiol ; 231: 102531, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778436

RESUMEN

Repeated generalized tonic-clonic seizures (GTCSs) are the most critical risk factor for sudden unexpected death in epilepsy (SUDEP). GTCSs can cause fatal apnea. We investigated neuronal plasticity mechanisms that precipitate postictal apnea and seizure-induced death. Repeated seizures worsened behavior, precipitated apnea, and enlarged active neuronal circuits, recruiting more neurons in such brainstem nuclei as periaqueductal gray (PAG) and dorsal raphe, indicative of brainstem plasticity. Seizure-activated neurons are more excitable and have enhanced AMPA-mediated excitatory transmission after a seizure. Global deletion of the GluA1 subunit of AMPA receptors abolishes postictal apnea and seizure-induced death. Treatment with a drug that blocks Ca2+-permeable AMPA receptors also renders mice apnea-free with five-fold better survival than untreated mice. Repeated seizures traffic the GluA1 subunit-containing AMPA receptors to synapses, and blocking this mechanism decreases the probability of postictal apnea and seizure-induced death.


Asunto(s)
Apnea , Receptores AMPA , Ratones , Animales , Receptores AMPA/uso terapéutico , Convulsiones/tratamiento farmacológico , Tronco Encefálico , Factores de Riesgo
7.
J Vis Exp ; (198)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37607101

RESUMEN

A novel in planta gene transformation method was developed for bamboo, which avoids the need for time-consuming and labor-intensive callus induction and regeneration processes. This method involves Agrobacterium-mediated gene expression via wounding and vacuum for bamboo seedlings. It successfully demonstrated the expression of exogenous genes, such as the RUBY reporter and Cas9 gene, in bamboo leaves. The highest transformation efficiency for the accumulation of betalain in RUBY seedlings was achieved using the GV3101 strain, with a percentage of 85.2% after infection. Although the foreign DNA did not integrate into the bamboo genome, the method was efficient in expressing the exogenous genes. Furthermore, a gene editing system has also been developed with a native reporter using this method, from which an in situ mutant generated by the edited bamboo violaxanthin de-epoxidase gene (PeVDE) in bamboo leaves, with a mutation rate of 17.33%. The mutation of PeVDE resulted in decreased non-photochemical quenching (NPQ) values under high light, which can be accurately detected by a fluorometer. This makes the edited PeVDE a potential native reporter for both exogenous and endogenous genes in bamboo. With the reporter of PeVDE, a cinnamoyl-CoA reductase gene was successfully edited with a mutation rate of 8.3%. This operation avoids the process of tissue culture or callus induction, which is quick and efficient for expressing exogenous genes and endogenous gene editing in bamboo. This method can improve the efficiency of gene function verification and will help reveal the molecular mechanisms of key metabolic pathways in bamboo.


Asunto(s)
Agrobacterium , Edición Génica , Betalaínas , Técnicas Genéticas , Expresión Génica
8.
Ann Clin Transl Neurol ; 10(10): 1873-1884, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37632130

RESUMEN

OBJECTIVE: Status epilepticus (SE) requires rapid intervention to prevent cerebral injury and mortality. The ketogenic diet, which bypasses glycolysis, is a promising remedy for patients with refractory SE. We tested the role of glycolytic lactate production in sustaining SE. METHODS: Extracellular lactate and glucose concentration during a seizure and SE in vivo was measured using lactate and glucose biosensors. A lactate dehydrogenase inhibitor, oxamate, blocked pyruvate to lactate conversion during SE. Video-EEG recordings evaluated seizure duration, severity, and immunohistochemistry was used to determine neuronal loss. Genetically encoded calcium indicator GCaMP7 was used to study the effect of oxamate on CA1 pyramidal neurons in vitro. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from CA1 neurons to study oxamate's impact on neurotransmission. RESULTS: The extracellular glucose concentration dropped rapidly during seizures, and lactate accumulated in the extracellular space. Inhibition of pyruvate to lactate conversion with oxamate terminated SE in mice. There was less neuronal loss in treated compared to control mice. Oxamate perfusion decreased tonic and phasic neuronal activity of GCaMP7-expressing CA1 pyramidal neurons in vitro. Oxamate application reduced the frequency, but not amplitude of sEPSCs recorded from CA1 neurons, suggesting an effect on the presynaptic glutamatergic neurotransmission. INTERPRETATION: A single seizure and SE stimulate lactate production. Diminishing pyruvate to lactate conversion with oxamate terminated SE and reduced associated neuronal death. Oxamate reduced neuronal excitability and excitatory neurotransmission at the presynaptic terminal. Glycolytic lactate production sustains SE and is an attractive therapeutic target.


Asunto(s)
Ácido Láctico , Estado Epiléptico , Humanos , Ratones , Animales , Glucosa , Convulsiones , Glucólisis , Piruvatos
9.
Tree Physiol ; 43(10): 1705-1717, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37471643

RESUMEN

Bamboo is a highly renewable biomass resource with outstanding ecological, economic and social benefits. However, its lengthy vegetative growth stage and uncertain flowering period have hindered the application of traditional breeding methods. In recent years, significant progress has been made in bamboo breeding. While technical advances in bamboo breeding have been impressive, it is essential to also consider the broader implications we can learn from bamboo's extraordinary features for sustainable development. This review provides an overview of the current status of bamboo breeding technology, including a detailed history of bamboo breeding divided into four eras, a comprehensive map of bamboo germplasm gardens worldwide, with a focus on China, and a summary of available transgenic technologies for gene function verification and genetic improvement. As the demand for bamboo as a sustainable and renewable resource increases continuously, breeding objectives should be focused on enhancing yield, wood properties and adaptability to diverse environmental conditions. In particular, priority should be given to improving fiber length, internode length and wall thickness, as well as regulating lignin and cellulose content for papermaking, substitute for plastic and other applications. Furthermore, we highlight the challenges and opportunities for future research and development in bamboo breeding, including the application of omics technologies, artificial intelligence and the development of new breeding methods. Finally, by integrating the technical advances in bamboo breeding with a discussion of its broader implications for sustainable development, this review provides a comprehensive framework for the development of bamboo industry.

10.
Eur J Pharm Sci ; 187: 106468, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37220818

RESUMEN

Owing to the difficult-to-penetrate blood-brain barrier (BBB), glioblastoma (GBM) doesn't respond well to the current chemical therapeutics. In this study, ultra-small micelles (NMs) self-assembled by RRR-a-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) as the delivery vehicle of chemical therapeutics in conjunction with ultrasound-targeted microbubble destruction (UTMD) to surmount BBB and treat GBM. Docetaxel (DTX) as a hydrophobic model drug was incorporated into NMs. DTX-loaded micelles (DTX-NMs) with 3.08% of drug loading exhibited a hydrodynamic diameter (33.2 nm) and positive Zeta potential (16.9 mV), having a remarkable tumor-permeating capacity. Furthermore, DTX-NMs presented good stability in physiologic condition. The sustained- release profile of DTX-NMs was also displayed by dynamic dialysis. Treatment of DTX-NMs together with UTMD led to more pronounced apoptosis of C6 tumor cells than DTX-NMs alone. Moreover, compared with the DTX solution or DTX-NMs alone, the combination of DTX-NMs with UTMD had a stronger inhibitory effect on tumor growth for GBM-bearing rats. The median survival period of GBM-bearing rats was extended to 75 days in the DTX-NMs+UTMD group from under 25 days in the control group. The invasive growth of glioblastoma was largely inhibited by the combination of DTX-NMs with UTMD, which was demonstrated by staining of Ki67, caspase-3, and CD31, together with TUNEL assay. In conclusion, the combination of ultra-small micelles (NMs) with UTMD may be a promising strategy to overcome the limitations of the first-line chemotherapeutics against GBM.


Asunto(s)
Antineoplásicos , Glioblastoma , Ratas , Animales , Docetaxel/farmacología , Micelas , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Microburbujas , Apoptosis , Antineoplásicos/química , Línea Celular Tumoral
11.
Plant Methods ; 19(1): 20, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864483

RESUMEN

BACKGROUND: Bamboo is a perennial and renewable biomass forest resource and its leaf flavonoid is an antioxidant for biological and pharmacological research. The established genetic transformation and gene editing systems in bamboo are significantly limited by the dependence on bamboo regeneration capability. The way to improve the flavonoid content in bamboo leaves through biotechnology is still not feasible. RESULTS: Here, we developed an in-planta, Agrobacterium-mediated gene expression method for exogenous genes via wounding and vacuum in bamboo. We demonstrated that the RUBY served as a reporter efficiently expressed in bamboo leaves and shoots, albeit unable to integrate into the chromosome. We have also developed a gene editing system by creating an in situ mutant of the bamboo violaxanthin de-epoxidase (PeVDE) gene in bamboo leaves, with lower NPQ values under the fluorometer, which can serve as a native reporter for gene editing. Furthermore, the bamboo leaves with increased flavonoid content were achieved by knocking out the cinnamoyl-CoA reductase genes. CONCLUSIONS: Our method can be applied for the functional characterization of novel genes in a short time and is helpful for bamboo leaf flavonoid biotechnology breeding in the future.

12.
Plant J ; 113(5): 1095-1101, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587294

RESUMEN

The application of DNA-protein interaction reporter assays for relational or ratiometric measurements within an experimental system is popular in biological research. However, the existing reporter-based interaction assays always require special equipment, expensive chemicals, and a complicated operation. Here, we developed a DNA-protein interaction technology integrating two visible reporters, RUBY and UV-visible GFP (eYGFPuv), which allows the expression of the cassette reporter contained cis-acting DNA element (DE) fused upstream of TATA box and RUBY, and a constitutive promoter regulating eYGFPuv in the same construct. The interaction of transcription factor (TF) and the DE can be detected by co-expressed the cassette reporter and TF in tobacco leaves where the cassette reporter alone serves as a control. We also revealed that eight function-unknown bamboo AP2/ERFs interacted with the DE of ANT-AP2R1R2 (ABE), DRE (DBE), GCC-box (EBE), and RAV1 binding element (RBE), respectively, which are consistent with the results by dual-luciferase reporter assays. Thus, the dual-visible reporters offer a convenient, visible, and cost-saving alternative to other existing techniques for DNA-protein interaction in plants.


Asunto(s)
Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica , ADN , Genes Reporteros
13.
Plant Physiol ; 191(3): 1492-1504, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36546733

RESUMEN

Deciduous woody plants like poplar (Populus spp.) have seasonal bud dormancy. It has been challenging to simultaneously delay the onset of bud dormancy in the fall and advance bud break in the spring, as bud dormancy, and bud break were thought to be controlled by different genetic factors. Here, we demonstrate that heterologous expression of the REVEILLE1 gene (named AaRVE1) from Agave (Agave americana) not only delays the onset of bud dormancy but also accelerates bud break in poplar in field trials. AaRVE1 heterologous expression increases poplar biomass yield by 166% in the greenhouse. Furthermore, we reveal that heterologous expression of AaRVE1 increases cytokinin contents, represses multiple dormancy-related genes, and up-regulates bud break-related genes, and that AaRVE1 functions as a transcriptional repressor and regulates the activity of the DORMANCY-ASSOCIATED PROTEIN 1 (DRM1) promoter. Our findings demonstrate that AaRVE1 appears to function as a regulator of bud dormancy and bud break, which has important implications for extending the growing season of deciduous trees in frost-free temperate and subtropical regions to increase crop yield.


Asunto(s)
Agave , Populus , Proteínas de Plantas/metabolismo , Populus/metabolismo , Estaciones del Año , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Brain ; 146(5): 1888-1902, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346130

RESUMEN

Repetitively firing neurons during seizures accelerate glycolysis to meet energy demand, which leads to the accumulation of extracellular glycolytic by-product lactate. Here, we demonstrate that lactate rapidly modulates neuronal excitability in times of metabolic stress via the hydroxycarboxylic acid receptor type 1 (HCA1R) to modify seizure activity. The extracellular lactate concentration, measured by a biosensor, rose quickly during brief and prolonged seizures. In two epilepsy models, mice lacking HCA1R (lactate receptor) were more susceptible to developing seizures. Moreover, HCA1R deficient (knockout) mice developed longer and more severe seizures than wild-type littermates. Lactate perfusion decreased tonic and phasic activity of CA1 pyramidal neurons in genetically encoded calcium indicator 7 imaging experiments. HCA1R agonist 3-chloro-5-hydroxybenzoic acid (3CL-HBA) reduced the activity of CA1 neurons in HCA1R WT but not in knockout mice. In patch-clamp recordings, both lactate and 3CL-HBA hyperpolarized CA1 pyramidal neurons. HCA1R activation reduced the spontaneous excitatory postsynaptic current frequency and altered the paired-pulse ratio of evoked excitatory postsynaptic currents in HCA1R wild-type but not in knockout mice, suggesting it diminished presynaptic release of excitatory neurotransmitters. Overall, our studies demonstrate that excessive neuronal activity accelerates glycolysis to generate lactate, which translocates to the extracellular space to slow neuronal firing and inhibit excitatory transmission via HCA1R. These studies may identify novel anticonvulsant target and seizure termination mechanisms.


Asunto(s)
Ácido Láctico , Neuronas , Ratones , Animales , Neuronas/fisiología , Células Piramidales/fisiología , Ratones Noqueados , Convulsiones , Hipocampo
15.
Cereb Cortex ; 33(8): 4645-4653, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36137566

RESUMEN

Postnatal maturation of the motor cortex is vital to developing a variety of functions, including the capacity for motor learning. The first postnatal weeks involve many neuronal and synaptic changes, which differ by region and layer, likely due to different functions and needs during development. Motor cortex layer II/III is critical to receiving and integrating inputs from somatosensory cortex and generating attentional signals that are important in motor learning and planning. Here, we examined the neuronal and synaptic changes occurring in layer II/III pyramidal neurons of the mouse motor cortex from the neonatal (postnatal day 10) to young adult (postnatal day 30) period, using a combination of electrophysiology and biochemical measures of glutamatergic receptor subunits. There are several changes between p10 and p30 in these neurons, including increased dendritic branching, neuronal excitability, glutamatergic synapse number and synaptic transmission. These changes are critical to ongoing plasticity and capacity for motor learning during development. Understanding these changes will help inform future studies examining the impact of early-life injury and experiences on motor learning and development capacity.


Asunto(s)
Corteza Motora , Ratones , Animales , Corteza Motora/fisiología , Células Piramidales/fisiología , Neuronas/fisiología , Transmisión Sináptica , Sinapsis/fisiología
16.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293422

RESUMEN

The Kelch repeat F-box (KFB) protein is an important E3 ubiquitin ligase that has been demonstrated to perform an important post-translational regulatory role in plants by mediating multiple biological processes. Despite their importance, KFBs have not yet been identified and characterized in bamboo. In this study, 19 PeKFBs were identified with F-box and Kelch domains; genes encoding these PeKFBs were unevenly distributed across 12 chromosomes of moso bamboo. Phylogenetic analysis indicated that the PeKFBs were divided into eight subclades based on similar gene structures and highly conserved motifs. A tissue-specific gene expression analysis showed that the PeKFBs were differentially expressed in various tissues of moso bamboo. All the promoters of the PeKFBs contained stress-related cis-elements, which was supported by the differentially expression of PeKFBs of moso bamboo under drought and cold stresses. Sixteen proteins were screened from the moso bamboo shoots' cDNA library using PeKFB9 as a bait through a yeast two-hybrid (Y2H) assay. Moreover, PeKFB9 physically interacted with PeSKP1-like-1 and PePRX72-1, which mediated the activity of peroxidase in proteolytic turnover. Taken together, these findings improved our understanding of PeKFBs, especially in response to stresses, and laid a foundation for revealing the molecular mechanism of PeKFB9 in regulating lignin polymerization by degrading peroxidase.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Lignina/genética , Lignina/metabolismo , Filogenia , Polimerizacion , Poaceae/genética , Poaceae/metabolismo , Peroxidasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Front Plant Sci ; 13: 992794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164374

RESUMEN

Culm color variation is an interesting phenomenon that contributes to the breeding of new varieties of ornamental plants during domestication. De-domesticated variation is considered ideal for identifying and interpreting the molecular mechanisms of plant mutations. However, the variation in culm color of bamboo remains unknown. In the present study, yellow and green culms generated from the same rhizome of Phyllostachys vivax cv. Aureocaulis (P. vivax) were used to elucidate the molecular mechanism of culm color formation. Phenotypic and physiological data showed that environmental suitability was higher in green culms than in yellow culms. High-throughput sequencing analysis showed 295 differentially expressed genes (DEGs) and 22 differentially expressed miRNAs (DEMs) in two different colored bamboo culms. There were 103 DEM-DEG interaction pairs, of which a representative "miRNA-mRNA" regulatory module involved in photosynthesis and pigment metabolism was formed by 14 DEM-DEG pairs. The interaction of the three key pairs was validated by qPCR and dual-luciferase assays. This study provides new insights into the molecular mechanism of miRNAs involved in P. vivax culm color formation, which provides evidence for plant de-domestication and is helpful for revealing the evolutionary mechanism of bamboo.

18.
Front Plant Sci ; 13: 927949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035723

RESUMEN

Plants employ an array of photoprotection mechanisms to alleviate the harmful effects of high light intensity. The violaxanthin cycle, which is associated with non-photochemical quenching (NPQ), involves violaxanthin de-epoxidase (VDE), and zeaxanthin epoxidase (ZEP) and is one of the most rapid and efficient mechanisms protecting plants under high light intensity. Woody bamboo is a class of economically and ecologically important evergreen grass species widely distributed in tropical and subtropical areas. However, the function of VDE in bamboo has not yet been elucidated. In this study, we found that high light intensity increased NPQ and stimulated the de-epoxidation of violaxanthin cycle components in moso bamboo (Phyllostachys edulis), whereas, samples treated with the VDE inhibitor (dithiothreitol) exhibited lower NPQ capacity, suggesting that violaxanthin cycle plays an important role in the photoprotection of bamboo. Further analysis showed that not only high light intensity but also extreme temperatures (4 and 42°C) and drought stress upregulated the expression of PeVDE in bamboo leaves, indicating that PeVDE is induced by multiple abiotic stresses. Overexpression of PeVDE under the control of the CaMV 35S promoter in Arabidopsis mutant npq1 mutant could rescue its NPQ, indicating that PeVDE functions in dissipating the excess absorbed light energy as thermal energy in bamboo. Moreover, compared with wild-type (Col-0) plants, the transgenic plants overexpressing PeVDE displayed enhanced photoprotection ability, higher NPQ capacity, slower decline in the maximum quantum yield of photosystem II (F v /F m ) under high light intensity, and faster recovery under optimal conditions. These results suggest that PeVDE positively regulates the response to high light intensity in bamboo plants growing in the natural environment, which could improve their photoprotection ability through the violaxanthin cycle and NPQ.

19.
Ann Neurol ; 91(5): 682-696, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35226367

RESUMEN

OBJECTIVE: Bilateral synchronous cortical activity occurs during sleep, attention, and seizures. Canonical models place the thalamus at the center of bilateral cortical synchronization because it generates bilateral sleep spindle oscillations and primarily generalized absence seizures. However, classical studies suggest that the corpus callosum mediates bilateral cortical synchronization. METHODS: We mapped the spread of right frontal lobe-onset, focal to bilateral seizures in mice and modified it using chemo and optogenetic suppression of motor thalamic nucleus and corpus callosotomy. RESULTS: Seizures from the right cortex spread faster to the left cortex than to the left thalamus. The 2 thalami have minimal monosynaptic commissural connections compared to the massive commissure corpus callosum. Chemogenetic and closed-loop optogenetic inhibition of the right ventrolateral thalamic nucleus did not alter inter-hemispheric seizure spread. However, anterior callosotomy delayed bilateral seizure oscillations. INTERPRETATION: Thalamocortical oscillations amplify focal onset motor seizures, and corpus callosum spreads them bilaterally. ANN NEUROL 2022;91:682-696.


Asunto(s)
Cuerpo Calloso , Roedores , Animales , Corteza Cerebral , Electroencefalografía , Humanos , Ratones , Convulsiones , Tálamo
20.
Nat Commun ; 12(1): 5466, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526499

RESUMEN

Moso bamboo (Phyllostachys edulis) is an economically and ecologically important nontimber forestry species. Further development of this species as a sustainable bamboo resource has been hindered by a lack of population genome information. Here, we report a moso bamboo genomic variation atlas of 5.45 million single-nucleotide polymorphisms (SNPs) from whole-genome resequencing of 427 individuals covering 15 representative geographic areas. We uncover low genetic diversity, high genotype heterozygosity, and genes under balancing selection underlying moso bamboo population adaptation. We infer its demographic history with one bottleneck and its recently small population without a rebound. We define five phylogenetic groups and infer that one group probably originated by a single-origin event from East China. Finally, we conduct genome-wide association analysis of nine important property-related traits to identify candidate genes, many of which are involved in cell wall, carbohydrate metabolism, and environmental adaptation. These results provide a foundation and resources for understanding moso bamboo evolution and the genetic mechanisms of agriculturally important traits.


Asunto(s)
Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Poaceae/genética , Transcriptoma , Adaptación Fisiológica/genética , China , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genética de Población/métodos , Genómica/métodos , Geografía , Filogenia , Proteínas de Plantas/genética , Poaceae/clasificación , Poaceae/metabolismo , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...