Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Neural Regen Res ; 20(1): 116-129, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767481

RESUMEN

Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.

3.
J Cancer Res Ther ; 20(2): 726-735, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687946

RESUMEN

BACKGROUND: As an antioncogene gene, phosphataseandtensinhomolog (PTEN) is closely related to tumorigenesis. However, after mutation, PTEN will lose its function and no longer exert a tumor suppression effect. Through this research, we explored the impact of PTEN mutation on hepatic carcinoma (HCC) and the mechanism of PTEN for regulating HCC. METHODS: First, bioinformatics was used to analyze the prognosis of PTEN in HCC. PTEN-related genes were then further analyzed by the LinkedOmics database, and GO and KEGG functional enrichment analysis were performed. Next, databases were utilized to predict the mutation and mutation frequency of PTEN. Eventually, CRISPR-Cas12a was applied to detect the R130Q mutation on PTEN in clinical samples of HCC. Finally, the fact that miR-92a-3p targets PTEN was identified by dual luciferase reporter gene assays, RT-qPCR, western blot, and rescue experiments. RESULTS: Bioinformatics analysis indicated the high mutation frequency of R130Q/G/L* site on the PTEN gene. Through CRISPR-Cas12a, R130Q mutation was detected on PTEN in 26 out of 40 clinical samples of HCC. CONCLUSIONS: On the one hand, our study revealed that CRISPR-Cas12a might play an important role in the screening and prognosis of HCC as a new clinical method to detect PTEN mutation.


Asunto(s)
Carcinoma Hepatocelular , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , Mutación , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/genética , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pronóstico , MicroARNs/genética , Biología Computacional/métodos , Sistemas CRISPR-Cas/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/genética
4.
BMC Med Genomics ; 17(1): 88, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627714

RESUMEN

BACKGROUND: Liver cancer ranks sixth in incidence and third in mortality globally and hepatocellular carcinoma (HCC) accounts for 90% of it. Hypoxia, glycolysis, and lactate metabolism have been found to regulate the progression of HCC separately. However, there is a lack of studies linking the above three to predict the prognosis of HCC. The present study aimed to identify a hypoxia-glycolysis-lactate-related gene signature for assessing the prognosis of HCC. METHODS: This study collected 510 hypoxia-glycolysis-lactate genes from Molecular Signatures Database (MSigDB) and then classified HCC patients from TCGA-LIHC by analyzing their hypoxia-glycolysis-lactate genes expression. Differentially expressed genes (DEGs) were screened out to construct a gene signature by LASSO-Cox analysis. Univariate and multivariate regression analyses were used to evaluate the independent prognostic value of the gene signature. Analyses of immune infiltration, somatic cell mutations, and correlation heatmap were conducted by "GSVA" R package. Single-cell analysis conducted by "SingleR", "celldex", "Seurat", and "CellCha" R packages revealed how signature genes participated in hypoxia/glycolysis/lactate metabolism and PPI network identified hub genes. RESULTS: We classified HCC patients from TCGA-LIHC into two clusters and screened out DEGs. An 18-genes prognostic signature including CDCA8, CBX2, PDE6A, MED8, DYNC1LI1, PSMD1, EIF5B, GNL2, SEPHS1, CCNJL, SOCS2, LDHA, G6PD, YBX1, RTN3, ADAMTS5, CLEC3B, and UCK2 was built to stratify the risk of HCC. The risk score of the hypoxia-glycolysis-lactate gene signature was further identified as a valuable independent factor for estimating the prognosis of HCC. Then we found that the features of clinical characteristics, immune infiltration, somatic cell mutations, and correlation analysis differed between the high-risk and low-risk groups. Furthermore, single-cell analysis indicated that the signature genes could interact with the ligand-receptors of hepatocytes/fibroblasts/plasma cells to participate in hypoxia/glycolysis/lactate metabolism and PPI network identified potential hub genes in this process: CDCA8, LDHA, YBX1. CONCLUSION: The hypoxia-glycolysis-lactate-related gene signature we built could provide prognostic value for HCC and suggest several hub genes for future HCC studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ácido Láctico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Pronóstico , Hipoxia , Proteínas del Ojo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Dineínas Citoplasmáticas
5.
Cell Death Dis ; 15(2): 153, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378679

RESUMEN

Breast cancer (BC) is the most commonly diagnosed malignant tumour in females worldwide. Although remarkable advances in early detection and treatment strategies have led to decreased mortality, recurrence and metastasis remain the major causes of cancer death in BC patients. Increasing evidence has demonstrated that circular RNAs (circRNAs) play critical roles in cancer progression. However, the detailed biological functions and molecular mechanisms of circRNAs in BC are unclear. The aim of this study was to investigate the possible role of circRNAs in the progression of BC. Differentially expressed circRNAs in BC were identified by integrating breast tumour-associated somatic CNV data and circRNA high-throughput sequencing. Aberrant hsa_circ_0007990 expression and host gene copy number were detected in BC cell lines via quantitative polymerase chain reaction (qPCR). The expression level of hsa_circ_0007990 in BC tissues was validated by in situ hybridization (ISH). Loss- and gain-of-function experiments were performed in vitro and in vivo, respectively, to explore the potential biological function of hsa_circ_0007990 in BC. The underlying mechanisms of hsa_circ_0007990 were investigated through MS2 RNA pull-down, RNA immunoprecipitation, RNA fluorescence in situ hybridization, immunofluorescence, chromatin immunoprecipitation and luciferase reporter assays. The levels of hsa_circ_0007990 were elevated in BC tissues and cell lines, an effect that was partly due to host gene copy number gains. Functional assays showed that hsa_circ_0007990 promoted BC cell growth. Mechanistically, hsa_circ_0007990 could bind to YBX1 and inhibit its degradation by preventing ubiquitin/proteasome-dependent degradation, thus enhancing the expression of the cell cycle-associated gene E2F1. Rescue experiments suggested that hsa_circ_0007990 promoted BC progression through YBX1. In general, our study demonstrated that hsa_circ_0007990 modulates the ubiquitination and degradation of YBX1 protein and further regulates E2F1 expression to promote BC progression. We explored the possible function and molecular mechanism of hsa_circ_0007990 in BC and identified a novel candidate target for the treatment of BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Femenino , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias de la Mama/patología , Proteolisis , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Proliferación Celular/genética , ARN/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Factor de Transcripción E2F1/metabolismo
6.
Biomed Pharmacother ; 171: 116184, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244328

RESUMEN

Pulmonary fibrosis is the result of dysfunctional repair after lung tissue injury, characterized by fibroblast proliferation and massive extracellular matrix aggregation. Once fibrotic lesions develop, effective treatment is difficult, with few drugs currently available. Here, we identified a short cyclic decapeptide RL-RF10 derived from frog skin secretions as a potential novel lead molecule for the amelioration of pulmonary fibrosis. In vivo experiments indicated that RL-RF10 treatment ameliorated lung histopathological damage and fibrogenesis after paraquat (PQ) induction in a concentration-dependent manner. On day 7, bronchoalveolar lavage fluid assays performed on mice showed that RL-RF10 exerted anti-inflammatory effects by decreasing the expression of inflammation-related factors, including transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α, in lung tissue. In addition, RL-RF10 down-regulated the levels of collagen I, collagen III, and vimentin, while increasing the expression of E-cadherin to inhibit epithelial-mesenchymal transition. Further research demonstrated that the SMAD2/3 signaling pathway, which is strongly linked to TGF-ß1, played a critical function in enhancing the pulmonary fibrosis relief achieved by RL-RF10. Both in vivo and in vitro assays showed that RL-RF10 treatment led to a significant reduction in the phosphorylation levels of SMAD2 and SMAD3 following PQ induction. Overall, we investigated the protective effects and underlying mechanisms of the RL-RF10 peptide against pulmonary fibrosis and demonstrated its potential as a novel therapeutic drug candidate for the treatment of pulmonary fibrotic diseases.


Asunto(s)
Lesión Pulmonar , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Paraquat , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno/farmacología , Anfibios/metabolismo , Transición Epitelial-Mesenquimal
7.
Front Immunol ; 14: 1185208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691929

RESUMEN

Background: Liver metastasis (LM) is a leading cause of cancer-related deaths in CRC patients, whereas the associated mechanisms have not yet been fully elucidated. Therefore, it is urgently needed to deeply explore novel metastasis accelerators and therapeutic targets of LM-CRC. Methods: The bulk RNA sequencing data and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The single-cell RNA sequencing (scRNA-seq) datasets of CRC were collected from and analyzed in the Tumor Immune Single-cell Hub (TISCH) database. The infiltration levels of cancer-associated fibroblasts (CAFs) and macrophages in CRC tissues were estimated by multiple immune deconvolution algorithms. The prognostic values of genes were identified by the Kaplan-Meier curve with a log-rank test. GSEA analysis was carried out to annotate the significantly enriched gene sets. The biological functions of cells were experimentally verified. Results: In the present study, hundreds of differentially expressed genes (DEGs) were selected in LM-CRC compared to primary CRC, and these DEGs were significantly associated with the regulation of endopeptidase activity, blood coagulation, and metabolic processes. Then, SPP1, CAV1, ANGPTL2, and COLEC11 were identified as the characteristic DEGs of LM-CRC, and higher expression levels of SPP1 and ANGPTL2 were significantly associated with worse clinical outcomes of CRC patients. In addition, ANGPTL2 and SPP1 mainly distributed in the tumor microenvironment (TME) of CRC tissues. Subsequent scRNA-seq analysis demonstrated that ANGPTL2 and SPP1 were markedly enriched in the CAFs and macrophages of CRC tissues, respectively. Moreover, we identified the significantly enriched gene sets in LM-CRC, especially those in the SPP1+macrophages and ANGPTL2+CAFs, such as the HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and the HALLMARK_COMPLEMENT. Finally, our in vitro experiments proved that ANGPTL2+CAFs and SPP1+macrophages promote the metastasis of CRC cells. Conclusion: Our study selected four characteristic genes of LM-CRC and identified ANGPTL2+CAFs and SPP1+macrophages subtypes as metastasis accelerators of CRC which provided a potential therapeutic target for LM-CRC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Algoritmos , Proteína 2 Similar a la Angiopoyetina , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Macrófagos , Osteopontina , Microambiente Tumoral/genética
8.
Microbiol Spectr ; : e0397922, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768079

RESUMEN

Avibacterium paragallinarum is the pathogen that causes infectious coryza, a highly contagious respiratory disease that brings a serious threat to chickens. Heme utilization systems play an important role in bacterial adversity adaptation and pathogenicity, and our previous report found the presence of heme utilization (HutZ) in Av. paragallinarum. However, little is known about the function of HutZ in Av. paragallinarum. In this study, the HutZ mutant strain of Av. paragallinarum was successfully developed and identified by PCR and western blot analysis. Mutation of HutZ significantly retards bacterial growth under reduced iron conditions, indicating the regulatory role of HutZ on growth and iron acquisition. Notably, the HutZ mutant strain had slower growth than the wild-type strain when heme was provided as the sole source of iron; thus, HutZ is crucial for heme utilization in Av. paragallinarum. Moreover, the HutZ mutant strain exhibited a markedly compromised tolerance to acid stress compared to the wild-type strain. Pathogenicity analysis showed that mutation of HutZ significantly weakened the ability of bacteria to invade and reproduce in host macrophage cells in vitro. Furthermore, the HutZ mutation could significantly decrease the bacterial virulence in chickens, which displayed lower morbidity and milder clinical symptoms. Hence, this is the first study to demonstrate in-depth the essential roles of HutZ on iron homeostasis and pathogenesis of Av. paragallinarum, which provides novel insight into advances of new prophylactic vaccines against this kind of bacteria.ImportanceHeme utilization (HutZ) protein has been characterized as an important heme-degrading enzyme that is critical for the cleavage of heme to biliverdin via verdoheme and can release iron to be used by bacteria. The interaction between HutZ and Av. paragallinarum is still unknown. Here, we unraveled the role of HutZ on the growth, iron acquisition, heme utilization, and resistance to acidic stress in Av. paragallinarum. We also uncovered the importance of HutZ for the success of Av. paragallinarum infection and provided new clues to the pathogenesis strategies of this organism. This work constitutes a relevant step toward an understanding of the role of HutZ protein as a master virulence factor. Therefore, this study is of great importance for understanding the mechanisms underlying Av. paragallinarum virulence and may contribute to therapeutic applications.

9.
Microbiol Spectr ; : e0055023, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732751

RESUMEN

To investigate the antibiotic resistance of Helicobacter pylori (H. pylori) in outpatients and to explore the consistency between genotype and phenotype of H. pylori antibiotic resistance. A retrospective study on outpatients screened with urea breath test for H. pylori infection in Nanjing First Hospital from April 2018 to January 2022. Patients who tested positive underwent a consented upper endoscopy, and the H. pylori infection was confirmed by rapid urease test (RUT) and H. pylori culture. For antibiotic resistance phenotype analysis, the H. pylori strains isolated from gastric biopsy were tested for antibiotic resistance phenotype by the Kirby-Bauer disk diffusion test. In addition, the antibiotic resistance genotype of isolated H. pylori was tested with a real-time polymerase chain reaction. A total of 4,399 patients underwent H. pylori infection screening, and 3,306 H. pylori strains were isolated. The antibiotic resistance phenotype test revealed that the resistance rates of metronidazole (MTZ), clarithromycin (CLR), levofloxacin (LEV), amoxicillin (AMX), furazolidone (FR), and tetracycline (TE) were 74.58%, 48.61%, 34.83%, 0.76%, 0.27%, and 0.09%, respectively. Additionally, the antibiotic resistance genotype test revealed that rdxA gene mutation A610G (92.96%), A91G (92.95%), C92A (93.00%), and G392A (95.07%) were predominant in H. pylori with MTZ resistance; 23S rRNA gene mutation A2143G (86.47%) occurred in most H. pylori with CLR resistance; and gyrA gene mutation 87Ile/Lys/Tyr/Arg (97.32%) and 91Asn/Gly/Tyr (90.61%) were the most popular mutations in strains with LEV resistance. The phenotypic resistance and genotypic resistance to CLR (kappa value = 0.824) and LEV (kappa value = 0.895) were in good agreement. The history of eradication with MTZ, CLR, LEV, and AMX was correlated with H. pylori resistance. In short, this study demonstrated that drug resistance of H. pylori was mainly to MTZ, CLR, and LEV in local outpatients. Three drugs can be selected for increased MICs (Minimum Inhibitory Concentration) via single chromosomal mutations. In addition, the genotype could be used to predict the phenotypic H. pylori resistance to CLR and LEV. IMPORTANCE Helicobacter pylori is a key bacterium that causes stomach diseases. There was a high prevalence of H. pylori in the Chinese population. We analyzed the resistance phenotype and genotype characteristics of H. pylori in 4,399 outpatients at the First Hospital of Nanjing, China. We found a higher resistance rate to metronidazole (MTZ) , clarithromycin (CLR), and levofloxacin (LEV), and the genotype could be used to predict the phenotypic H. pylori resistance to CLR and LEV. This study provides information on H. pylori infection and also provides guidance for clinical doctors' drug treatment.

10.
Environ Toxicol ; 38(12): 2826-2835, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37565786

RESUMEN

BACKGROUND: Active peptides play a vital role in the development of new drugs and the identification and discovery of drug targets. As the first reported native peptide homodimer with pro-regenerative potency, OA-GP11d could potentially be used as a novel molecular probe to help elucidate the molecular mechanism of skin wound repair and provide new drug targets. METHODS: Bioinformatics analysis and luciferase assay were adopted to determine microRNAs (miRNAs) and its target. The prohealing potency of the miRNA was determined by MTS and a Transwell experiment against mouse macrophages. Enzyme-linked immunosorbent assay, realtime polymerase chain reaction, and western blotting were performed to explore the molecular mechanisms. RESULTS: In this study, OA-GP11d was shown to induce Mus musculus microRNA-186-5p (mmu-miR-186-5p) down-regulation. Results showed that miR-186-5p had a negative effect on macrophage migration and proliferation as well as a targeted and negative effect on TGF-ß type II receptor (TGFßR2) expression and an inhibitory effect on activation of the downstream SMAD family member 2 (Smad2) and protein-p38 kinase signaling pathways. Importantly, delivery of a miR-186-5p mimic delayed skin wound healing in mice. CONCLUSION: miR-186-5p regulated macrophage migration and proliferation to delay wound healing through the TGFßR2/Smad2/p38 molecular axes, thus providing a promising new pro-repair drug target.


Asunto(s)
MicroARNs , Animales , Ratones , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Regulación hacia Abajo , Movimiento Celular/genética , Cicatrización de Heridas
11.
Front Aging Neurosci ; 15: 1192681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396661

RESUMEN

Background: Symptomatic intracranial atherosclerotic stenosis (sICAS) is one of the common causes of ischemic stroke. However, the treatment of sICAS remains a challenge in the past with unfavorable findings. The purpose of this study was to explore the effect of stenting versus aggressive medical management on preventing recurrent stroke in patients with sICAS. Methods: We prospectively collected the clinical information of patients with sICAS who underwent percutaneous angioplasty and/or stenting (PTAS) or aggressive medical therapy from March 2020 to February 2022. Propensity score matching (PSM) was employed to ensure well-balanced characteristics of two groups. The primary outcome endpoint was defined as recurrent stroke or transient ischemic attack (TIA) within 1 year. Results: We enrolled 207 patients (51 in the PTAS and 156 in the aggressive medical groups) with sICAS. No significant difference was found between PTAS group and aggressive medical group for the risk of stroke or TIA in the same territory beyond 30 days through 6 months (P = 0.570) and beyond 30 days through 1 year (P = 0.739) except for within 30 days (P = 0.003). Furthermore, none showed a significant difference for disabling stroke, death and intracranial hemorrhage within 1 year. These results remain stable after adjustment. After PSM, all the outcomes have no significant difference between these two groups. Conclusion: The PTAS has similar treatment outcomes compared with aggressive medical therapy in patients with sICAS across 1-year follow-up.

12.
Sci Total Environ ; 895: 165022, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348708

RESUMEN

Hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs) have shown their potential in environmental reconstructions. However, the unclear underlying mechanism challenges their application. To elucidate the effects of water parameters on OH-GDGT-derived indices and understand their environmental implications, we investigated the core OH-GDGTs of suspended particulate matter (SPM) from water columns in a year cycle and surface sediments at different water depths along a nearshore-offshore transect in Lake Fuxian, a deep and large lake in southwestern China. OH-GDGTs were primarily found in the hypolimnion and were produced in situ by Group I.1a Thaumarchaeota. The relative abundance of OH-GDGTs (%OH-GDGTs) and ring indices (RI-OH and RI-OH') in the hypolimnion were significantly influenced by dissolved oxygen (DO) and pH, particularly DO, which regulated the inverse physiological functions of the hydroxyl and cyclopentane moieties of archaea. %OH-GDGTs values in SPM were positively correlated with DO and negatively correlated with pH levels, while RI-OH values exhibited an inverse relationship with DO and positive correlation with pH levels. OH-GDGTs in surface sediments appeared to be homologous to that of water columns, indicating that their inferred proxies could be regulated by the configuration of water parameters. The sedimentary %OH-GDGTs values increased as the RI-OH values decreased with water depth along the transect from the lakeshore to the lake center, suggesting their potential as lake-level proxies.


Asunto(s)
Glicerol , Lagos , Archaea , China , Agua , Lípidos
13.
FASEB J ; 37(4): e22892, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951647

RESUMEN

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Asunto(s)
Diabetes Mellitus Experimental , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Piel , Fibras Nerviosas/metabolismo , Sensación , Péptidos/farmacología , Regeneración Nerviosa/fisiología
14.
Cancer Sci ; 114(4): 1396-1409, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36562402

RESUMEN

Emerging evidence has suggested that circular RNAs (circRNAs) have vital functions during the initiation and progression of various diseases. However, circRNA potential mechanisms in colorectal cancer (CRC) are largely unknown. Here, we sought to investigate the role and underlying regulatory mechanism of circ0104103 in CRC. circ0104103 was validated by quantitative RT-PCR (qRT-PCR) and Sanger sequencing. Gain- and loss-of-function assays in cell lines and mouse xenograft models were utilized to investigate the effects of circ0104103 in CRC. RNA pull-down assays, RNA immunoprecipitation assays, bioinformatics analyses, RNA FISH, and luciferase reporter assays were used to elucidate the potential mechanism of circ0104103 in CRC. We identified circ0104103, which is strongly downregulated in CRC tissues and cell lines. Functional studies revealed that circ0104103 inhibited CRC cell growth, migration, and invasion both in vitro and in vivo. Mechanistically, circ0104103 binds to HuR, a functional RNA-binding protein commonly expressed in CRC. HuR binds to the 3'UTR of LACTB mRNA to facilitate stabilization and increase its expression. Moreover, circ0104103 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR-373-5p to increase LACTB expression, resulting in inhibiting the occurrence and progression of CRC. Taken together, our study revealed that circ0104103 acts as a tumor suppressor and may be a novel biomarker and therapeutic target in CRC.


Asunto(s)
Neoplasias Colorrectales , Proteína 1 Similar a ELAV , MicroARNs , ARN Circular , Animales , Humanos , Ratones , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Mitocondriales/metabolismo , Interferencia de ARN , ARN Circular/genética , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo
15.
Viruses ; 14(12)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36560709

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In addition to the common genogroup J IHNV, genogroup U has been newly discovered in China. However, there is no effective DNA vaccine to fight against this emerging genogroup U IHNV in China. In this study, DNA vaccines encoding the IHNV viral glycoprotein (G) gene of the GS2014 (genogroup J) and BjLL (genogroup U) strains isolated from northern China were successfully developed, which were identified by restriction analysis and IFA. The expression of the Mx-1 gene and G gene in the spleens and muscles of the injection site as well as the titers of the serum antibodies were measured to evaluate the vaccine efficacy by RT-qPCR and ELISA. We found that DNA vaccine immunization could activate Mx1 gene expression and upregulate G gene expression, and the mRNA levels of the Mx1 gene in the muscles were significantly higher than those in the spleens. Notably, DNA vaccine immunization might not promote the serum antibody in fish at the early stage of immunization. Furthermore, the efficacy of the constructed vaccines was tested in intra- and cross-genogroup challenges by a viral challenge in vivo. It seemed that the DNA vaccines were able to provide great immune protection against IHNV infection. In addition, the genogroup J IHNV-G DNA vaccine showed better immune efficacy than the genogroup U IHNV-G or divalent vaccine, which could provide cross-immune protection against the genogroup U IHNV challenge. Therefore, this is the first study to construct an IHNV DNA vaccine using the G gene from an emerging genogroup U IHNV strain in China. The results provide great insight into the advances of new prophylactic strategies to fight both the genogroup J and U IHNV in China.


Asunto(s)
Enfermedades de los Peces , Virus de la Necrosis Hematopoyética Infecciosa , Oncorhynchus mykiss , Infecciones por Rhabdoviridae , Vacunas de ADN , Vacunas Virales , Animales , Vacunas de ADN/genética , Virus de la Necrosis Hematopoyética Infecciosa/genética , Genotipo , China/epidemiología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/veterinaria , Vacunas Virales/genética
16.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430673

RESUMEN

Intestinal homeostasis is maintained through the interplay of the intestinal mucosa, local and systemic immune factors, and the microbial content of the gut. Iron is a trace mineral in most organisms, including humans, which is essential for growth, systemic metabolism and immune response. Paradoxically, excessive iron intake and/or high iron status can be detrimental to iron metabolism in the intestine and lead to iron overload and ferroptosis-programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes, which contributes to several intestinal diseases. In this review, we comprehensively review recent findings on the impacts of iron overload and ferroptosis on intestinal mucosal homeostasis and inflammation and then present the progress of iron overload and ferroptosis-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide a new understanding of intestinal disease pathogenesis and facilitate advanced preventive and therapeutic strategies for intestinal dysfunction and diseases.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Humanos , Homeostasis , Inflamación , Hierro/metabolismo , Mucosa Intestinal/metabolismo
17.
Front Genet ; 13: 948920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212126

RESUMEN

Background: The traditional TNM staging system is often insufficient to differentiate the survival discrepancies of colorectal cancer (CRC) patients at TNM stage I/II. Our study aimed to reclassify stage I/II CRC patients into several subgroups with different prognoses and explore their suitable therapeutic methods. Methods: Single-cell RNA (scRNA) sequencing data, bulk RNA sequencing data, and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The tumor microenvironment of CRC tissues was accessed by the ESTIMATE algorithm. The prognostic genes were identified by Cox regression analysis. GO and KEGG analyses were conducted in the DAVID database. GSEA analysis was performed for annotation of the correlated gene sets. Results: We successfully reclassified stage I/II CRC patients into two subgroups and discovered that patients in cluster-2 underwent worse overall survival than those in cluster-1. GSEA analysis showed that immune-associated gene sets were positively enriched in cluster-2. Besides, the differentially expressed genes (DEGs) between cluster-1 and cluster-2 patients also participated in immune-related biological processes and signaling pathways. Moreover, we found that more immune cells infiltrated the microenvironment of cluster-2 patients compared to that of cluster-1 patients, such as Tregs and tumor-associated macrophages. ScRNA sequencing analysis uncovered that most of the enriched immune-associated signaling in cluster-2 patients was mainly attributed to these upregulated immune cells whose infiltration levels were also high in CRC tissues rather than in normal tissues. In addition, we demonstrated that the expression of immune checkpoint genes was significantly higher in cluster-2 patients compared to cluster-1 patients. ScRNA sequencing analysis revealed that the infiltrated CD8+T cells in CRC were naïve T cells and can be activated into effector T cells after immune checkpoint blockade (ICB) treatment. Conclusion: TNM stage I/II CRC patients can be divided into two subgroups, which have different overall survival rates, tumor microenvironment, and response to ICB therapy.

18.
J Biomed Res ; 36(4): 231-241, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35965433

RESUMEN

Mounting evidence indicates that long non-coding RNAs (lncRNAs) have critical roles in colorectal cancer (CRC) progression, providing many potential diagnostic biomarkers, prognostic biomarkers, and treatment targets. Here, we sought to investigate the role and underlying regulatory mechanism of lncRNA small nucleolar RNA host gene 16 ( SNHG16) in CRC. The expressions of SNHG16 in CRC were identified by RNA-sequencing and quantitative reverse transcription PCR. The functions of SNHG16 were explored by a series of in vitro and in vivo assays (colony formation assay, flow cytometry assay, and xenograft model). Bioinformatics analysis, RNA fluorescence in situ hybridization and luciferase reporter assay were used to investigate the regulatory mechanism of effects of SNHG16. SNHG16 was found to be significantly elevated in human CRC tissues and cell lines. Functional studies suggested that SNHG16 promoted CRC cell growth both in vitro and in vivo. Mechanistically, we identified that SNHG16 is expressed predominantly in the cytoplasm. SNHG16 could interact with miR-214-3p and up-regulated its target ABCB1. This study indicated that SNHG16 plays an oncogenic role in CRC, suggesting it could be a novel biomarker and therapeutic target in CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...