Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(47): 17392-17399, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961783

RESUMEN

Combining targeting ability, imaging function, and photothermal/photodynamic therapy into a single agent is highly desired for cancer theranostics. Herein, we developed a one-for-all nanoplatform with N/P/S-codoped fluorescent carbon nanodots (CNDs) for tumor-specific phototheranostics. The CNDs were prepared via a one-pot hydrothermal process using cancer cells as sources of carbon, nitrogen, phosphorus, and sulfur. The obtained N/P/S-codoped CNDs exhibit wide light absorption in the range of 200-900 nm and excitation-dependent emission with high photostability. Importantly, the cancer cell-derived N/P/S-codoped CNDs have outstanding biocompatibility and naturally intrinsic targeted ability for cancer cells as well as dual photothermal/photodynamic effects under 795 nm laser irradiation. Moreover, the photothermal conversion efficiency and singlet oxygen (1O2) generation efficiency were calculated to be 52 and 34%, respectively. These exceptional properties enable CNDs to act as fine theranostic agents for targeted imaging and photothermal-photodynamic synergistic therapy within the NIR therapeutic window. The CNDs prepared in this work are promising for construction as a universal tumor phototheranostic platform.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Carbono/farmacología , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Colorantes , Nanomedicina Teranóstica/métodos , Línea Celular Tumoral
2.
Front Aging Neurosci ; 15: 1288295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020761

RESUMEN

Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD. Methods: In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used. And then, three types of signal features of resting-state EEG, i.e., spectrum, complexity, and synchronization, were performed by applying various signal processing and statistical methods, to obtain a total of 18 features for each signal epoch. Next, the supervised machine learning classification algorithms of decision trees, random forests, and support vector machine (SVM) were compared in categorizing processed EEG signal features of AD and normal cases with leave-one-person-out cross-validation. Results: The results showed that compared to normal cases, the major change in EEG characteristics in AD cases was an EEG slowing, a reduced complexity, and a decrease in synchrony. The proposed methodology achieved a relatively high classification accuracy of 95.65, 95.86, and 88.54% between AD and normal cases for decision trees, random forests, and SVM, respectively, showing that the integration of spectrum, complexity, and synchronization features for EEG signals can enhance the performance of identifying AD and normal subjects. Conclusion: This study recommended the integration of EEG features of spectrum, complexity, and synchronization for aiding the diagnosis of AD.

3.
Front Physiol ; 14: 1294729, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028756

RESUMEN

Qingtian paddy field carp (PF-carp) is a local carp cultivated in the paddy field of Qingtian, Zhejiang. This rice-fish co-culture system has been recognized as one of the Globally Important Agriculture Heritage Systems (GIAHS). PF-carp has been acclimatized to the high-temperature environment of shallow paddy fields after several centuries of domestication. To reveal the physiological and molecular regulatory mechanisms of PF-carp, we chose to use 28°C as the control group and 34°C as the treatment group. We measured biochemical parameters in their serum and hepatopancreases and also performed transcriptome sequencing analysis. Compared with the control group, the serum levels of malondialdehyde (MDA), glucose (GLU), glutathione peroxidase (GSH-Px), catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) show no significant change. In addition, superoxide dismutase (SOD), GSH-Px, and CAT also show no significant change in hepatopancreases. We identified 1,253 differentially expressed genes (DEGs), and their pathway analysis revealed that heat stress affected AMPK signaling pathway, protein export, and other biological processes. It is worth noting that protein processing in the endoplasmic reticulum (ER) was the most significantly enriched pathway identified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA). Significantly higher levels of HSP40, HSP70, HSP90, and other ubiquitin ligase-related genes were upregulated. In summary, heat stress did not lead to tissue damage, inflammation, oxidative stress, and ER stress in the hepatopancreases of PF-carp. This study provides valuable insights into the adaptation mechanism of this species to the high-temperature environment of paddy fields.

4.
Adv Healthc Mater ; 12(31): e2302016, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37713653

RESUMEN

Multimodal cancer therapies show great promise in synergistically enhancing anticancer efficacy through different mechanisms. However, most current multimodal therapies either rely on complex assemblies of multiple functional nanomaterials and drug molecules or involve the use of nanomedicines with poor in vivo degradability/metabolizability, thus restricting their clinical translatability. Herein, a nanoflower-medicine using iron ions, thioguanine (TG), and tetracarboxylic porphyrin (TCPP) are synthesized as building blocks through a one-step hydrothermal method for combined chemo/chemodynamic/photodynamic cancer therapy. The resulting nanoflowers, consisting of low-density Fe2 O3 core and iron complex (Fe-TG and Fe-TCPP compounds) shell, exhibit high accumulation at the tumor site, desirable degradability in the tumor microenvironment (TME), robust suppression of tumor growth and metastasis, as well as effective reinvigoration of host antitumor immunity. Triggered by the low pH in tumor microenvironment, the nanoflowers gradually degrade after internalization, contributing to the effective drug release and initiation of high-efficiency catalytic reactions precisely in tumor sites. Moreover, iron ions can be eliminated from the body through renal clearance after fulfilling their mission. Strikingly, it is also found that the multimodal synergistic therapy effectively elicits the host antitumor immunity without inducing additional toxicity. This easy-manufactured and degradable multimodal therapeutic nanomedicine is promising for clinical precision oncology.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Microambiente Tumoral , Medicina de Precisión , Iones/uso terapéutico , Hierro , Línea Celular Tumoral
5.
Small ; 19(46): e2303189, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37471172

RESUMEN

Two donor-acceptor type tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) are investigated as electrodes for symmetric supercapacitors in different electrolytes, to understand the charge storage and dynamics in 2D COFs. Till-date, most COFs are investigated as Faradic redox pseudocapacitors in aqueous electrolytes. For the first time, it is tried to enhance the electrochemical performance and stability of pristine COF-based supercapacitors by operating them in the non-Faradaic electrochemically double layer capacitance region. It is found that the charge storage mechanism of ionic liquid (IL) electrolyte based supercapacitors is dependent on the micropore size and surface charge density of the donor-acceptor COFs. The surface charge density alters due to the different electron acceptor building blocks, which in turn influences the dense packing of the IL near its pore. The micropores induce pore confinement of IL in the COFs by partial breaking of coulomb ordering and rearranging it. The combination of these two factors enhance the charge storage in the highly microporous COFs. The density functional theory calculations support the same. At 1 A g-1 , TTF-porphyrin COF provides capacitance of 42, 70, and 130 F g-1 in aqueous, organic, and IL electrolyte respectively. TTF-diamine COF shows a similar trend with 100 F g-1 capacitance in IL.

6.
J Chem Inf Model ; 63(9): 2881-2894, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104820

RESUMEN

Alzheimer's disease (AD), a neurodegenerative disease with no cure, affects millions of people worldwide and has become one of the biggest healthcare challenges. Some investigated compounds play anti-AD roles at the cellular or the animal level, but their molecular mechanisms remain unclear. In this study, we designed a strategy combining network-based and structure-based methods together to identify targets for anti-AD sarsasapogenin derivatives (AAs). First, we collected drug-target interactions (DTIs) data from public databases, constructed a global DTI network, and generated drug-substructure associations. After network construction, network-based models were built for DTI prediction. The best bSDTNBI-FCFP_4 model was further used to predict DTIs for AAs. Second, a structure-based molecular docking method was employed for rescreening the prediction results to obtain more credible target proteins. Finally, in vitro experiments were conducted for validation of the predicted targets, and Nrf2 showed significant evidence as the target of anti-AD compound AA13. Moreover, we analyzed the potential mechanisms of AA13 for the treatment of AD. Generally, our combined strategy could be applied to other novel drugs or compounds and become a useful tool in identification of new targets and elucidation of disease mechanisms. Our model was deployed on our NetInfer web server (http://lmmd.ecust.edu.cn/netinfer/).


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Espirostanos , Animales , Simulación del Acoplamiento Molecular , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Espirostanos/química , Espirostanos/uso terapéutico
7.
Angew Chem Int Ed Engl ; 62(19): e202216719, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36897555

RESUMEN

Four highly porous covalent organic frameworks (COFs) containing pyrene units were prepared and explored for photocatalytic H2 O2 production. The experimental studies are complemented by density functional theory calculations, proving that the pyrene unit is more active for H2 O2 production than the bipyridine and (diarylamino)benzene units reported previously. H2 O2 decomposition experiments verified that the distribution of pyrene units over a large surface area of COFs plays an important role in catalytic performance. The Py-Py-COF though contains more pyrene units than other COFs which induces a high H2 O2 decomposition due to a dense concentration of pyrene in close proximity over a limited surface area. Therefore, a two-phase reaction system (water-benzyl alcohol) was employed to inhibit H2 O2 decomposition. This is the first report on applying pyrene-based COFs in a two-phase system for photocatalytic H2 O2 generation.

8.
PeerJ ; 11: e14976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935917

RESUMEN

Interpersonal communication through vocal information is very important for human society. During verbal interactions, our vocal cord vibrations convey important information regarding voice identity, which allows us to decide how to respond to speakers (e.g., neither greeting a stranger too warmly or speaking too coldly to a friend). Numerous neural studies have shown that identifying familiar and unfamiliar voices may rely on different neural bases. However, the mechanism underlying voice identification of individuals of varying familiarity has not been determined due to vague definitions, confusion of terms, and differences in task design. To address this issue, the present study first categorized three kinds of voice identity processing (perception, recognition and identification) from speakers with different degrees of familiarity. We defined voice identity perception as passively listening to a voice or determining if the voice was human, voice identity recognition as determining if the sound heard was acoustically familiar, and voice identity identification as ascertaining whether a voice is associated with a name or face. Of these, voice identity perception involves processing unfamiliar voices, and voice identity recognition and identification involves processing familiar voices. According to these three definitions, we performed activation likelihood estimation (ALE) on 32 studies and revealed different brain mechanisms underlying processing of unfamiliar and familiar voice identities. The results were as follows: (1) familiar voice recognition/identification was supported by a network involving most regions in the temporal lobe, some regions in the frontal lobe, subcortical structures and regions around the marginal lobes; (2) the bilateral superior temporal gyrus was recruited for voice identity perception of an unfamiliar voice; (3) voice identity recognition/identification of familiar voices was more likely to activate the right frontal lobe than voice identity perception of unfamiliar voices, while voice identity perception of an unfamiliar voice was more likely to activate the bilateral temporal lobe and left frontal lobe; and (4) the bilateral superior temporal gyrus served as a shared neural basis of unfamiliar voice identity perception and familiar voice identity recognition/identification. In general, the results of the current study address gaps in the literature, provide clear definitions of concepts, and indicate brain mechanisms for subsequent investigations.


Asunto(s)
Encéfalo , Voz , Humanos , Funciones de Verosimilitud , Encéfalo/fisiología , Percepción Auditiva/fisiología , Reconocimiento en Psicología/fisiología
9.
Front Immunol ; 14: 1034755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845128

RESUMEN

Background: Bronchial asthma (asthma) is a chronic inflammatory disease of the airways, involving a variety of cells and cellular components, that manifests clinically as recurrent episodes of wheezing, shortness of breath, with or without chest tightness or cough, airway hyperresponsiveness, and variable airflow limitation. The number of people with asthma has reached 358 million worldwide and asthma causes huge economic loss. However, there is a subset of patients who are not sensitive to existing drugs and the existing drugs have many adverse effects. Therefore, it's important to find new drugs for asthma patients. Methods: Publications related to biologics in asthma published from 2000 to 2022 were retrieved from Web of Science Core Collection. The search strategies were as follows: topic: TS=(biologic* OR "biologic* product*" OR "biologic* therap*" OR biotherapy* OR "biologic* agent*" OR Benralizumab OR "MEDI-563" OR Fasenra OR "BIW-8405" OR Dupilumab OR SAR231893 OR "SAR-231893" OR Dupixent OR REGN668 OR "REGN-668" OR Mepolizumab OR Bosatria OR "SB-240563" OR SB240563 OR Nucala OR Omalizumab OR Xolair OR Reslizumab OR "SCH-55700" OR SCH55700 OR "CEP-38072" OR CEP38072 OR Cinqair OR "DCP-835" OR DCP835 OR Tezspire OR "tezepelumab-ekko" OR "AMG-157" OR tezspire OR "MEDI-9929" OR "MEDI-19929" OR MEDI9929 OR Itepekimab OR "REGN-3500"OR REGN3500 OR "SAR-440340"OR SAR440340 OR Tralokinumab OR "CAT-354" OR Anrukinzumab OR "IMA-638" OR Lebrikizumab OR "RO-5490255"OR "RG-3637"OR "TNX-650"OR "MILR1444A"OR "MILR-1444A"OR"PRO301444"OR "PRO-301444"OR Pitrakinra OR altrakincept OR "AMG-317"OR"AMG317" OR Etokimab OR Pascolizumab OR "IMA-026"OR Enokizumab OR "MEDI-528"OR "7F3COM-2H2" OR 7F3COM2H2 OR Brodalumab OR "KHK-4827" OR "KHK4827"OR "AMG-827"OR Siliq OR Ligelizumab OR "QGE-031" OR QGE031 OR Quilizumab OR Talizumab OR "TNX-901" OR TNX901 OR Infliximab OR Etanercept OR "PRS-060") AND TS=asthma*. The document type was set to articles and review articles and the language restriction was set to English. Three different analysis tools including one online platform, VOS viewer1.6.18, and CiteSpace V 6.1.R1 software were used to conduct this bibliometric study. Results: This bibliometric study included 1,267 English papers published in 244 journals from 2,012 institutions in 69 countries/regions. Omalizumab, benralizumab, mepolizumab, and tezepelumab in relation to asthma were the research hotspots in the field. Conclusion: This study systematically uncovers a holistic picture of existing literature related to the biologic treatment of asthma over the past 20 years. We consulted scholars in order to understand key information in this field from the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.


Asunto(s)
Asma , Productos Biológicos , Humanos , Omalizumab/uso terapéutico , Asma/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Bibliometría
10.
Animals (Basel) ; 12(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36496916

RESUMEN

Extreme fluctuations in water temperature lead to significant economic losses for the aquaculture industry. Cyprinus carpio var qingtianensis (locally called Qingtian paddy field carp), is a local variety commonly found in Zhejiang province, China. Unlike traditional aquaculture environments, the water temperature range between day and night in the rice field environment is much larger, and the high temperature in summer may exceed the growth threshold of fish because there is no manual intervention; therefore, the study of how the Qingtian paddy field carp (PF carp) adapts to high-temperature conditions can shed light how the species adapt to the rice field environment. To investigate the molecular mechanisms of this fish under thermal stress, the liver metabolomics of Qiangtian paddy field carp (PF carp) were analyzed. In this study, metabolomics was used to examine the metabolic reaction of PF carp (102 days old, 104.69 ± 3.08 g in weight, 14.65 ± 0.46 cm in length) at water temperatures of 28 °C (control group, CG), 34 °C (experimental group (EG) 34), and 38 °C (EG38). The results show that 175 expression profile metabolites (DEMs), including 115 upregulated and 60 downregulated metabolites, were found in the CG vs. EG34. A total of 354 DEMs were inspected in CG vs. EG38, with 85 metabolites downregulated and 269 metabolites upregulated. According to the pathway enrichment study, various pathways were altered by thermal stress, including those of lipid, amino-acid, and carbohydrate metabolism. Our study presents a potential metabolic profile for PF carp under thermal stress. It also demonstrates how the host responds to thermal stress on a metabolic and molecular level.

12.
ACS Appl Mater Interfaces ; 14(33): 37681-37688, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35943818

RESUMEN

Iodoarenes are important precursors for fine chemicals and pharmaceuticals. The direct iodination of arenes using molecular iodine (I2) has emerged as an attractive green synthesis method. Most of the direct iodination protocols are still homogeneous systems that require harsh conditions and use or produce toxic products. We report a new heterogeneous catalytic route for the direct aerobic iodination of arenes under mild conditions using a PMoV2 polyoxometalate (POM) embedded in the metal-organic framework (MOF) MIL-101 (PMoV2@MIL-101). The catalyst shows full yield for the conversion of mesitylene to 2-iodomesitylene at a rate that is similar to the homogeneous POM system. Moreover, the catalyst is applicable for a wide range of substrates in an oxygen atmosphere without using any co-catalysts or sacrificial agents. To the best of our knowledge, this is the first report on designing a sustainable and green MOF-based heterogeneous catalytic system for the direct iodination reaction using molecular oxygen and iodine.

13.
Adv Mar Biol ; 91: 1-286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35777924

RESUMEN

Holothuria scabra is one of the most intensively studied holothuroids, or sea cucumbers (Echinodermata: Holothuroidea), having been discussed in the literature since the early 19th century. The species is important for several reasons: (1) it is widely distributed and historically abundant in several shallow soft-bottom habitats throughout the Indo-Pacific, (2) it has a high commercial value on the Asian markets, where it is mainly sold as a dried product (beche-de-mer) and (3) it is the only tropical holothuroid species that can currently be mass-produced in hatcheries. Over 20 years have elapsed since the last comprehensive review on H. scabra published in 2001. Research on H. scabra has continued to accumulate, fuelled by intense commercial exploitation, and further declines in wild stocks over the entire distribution range. This review compiles data from over 950 publications pertaining to the biology, ecology, physiology, biochemical composition, aquaculture, fishery, processing and trade of H. scabra, presenting the most complete synthesis to date, including scientific papers and material published by local institutions and/or in foreign languages. The main goal of this project was to summarize and critically discuss the abundant literature on this species, making it more readily accessible to all stakeholders aiming to conduct fundamental and applied research on H. scabra, or wishing to develop aquaculture, stock enhancement and management programs across its geographic range.


Asunto(s)
Holothuria , Pepinos de Mar , Animales , Equinodermos , Ecología , Explotaciones Pesqueras
14.
Front Physiol ; 13: 853850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669576

RESUMEN

The Qingtian paddy field carp (Cyprinus carpio var qingtianensis) is a local carp cultivated in the rice field of Qingtian county, Zhejiang province, China. The paddy field environment is distinct from the pond environment. Due to the inability to artificially increase oxygen, the dissolved oxygen greatly changes during the day. Therefore, investigating the physiological regulation to the changes of acute dissolved oxygen in Qingtian paddy field carp (PF-carp) will dramatically clarify how it adapts to the paddy breeding environment. The high tolerance of Qingtian paddy field carp to hypoxia makes it an ideal organism for studying molecular regulatory mechanisms during hypoxia process and reoxygenation following hypoxia in fish. In this study, we compared the changes of metabolites in the hepatopancreas during hypoxia stress and the following reoxygenation through comparative metabolomics. The results showed 131 differentially expressed metabolites between the hypoxic groups and control groups. Among them, 95 were up-regulated, and 36 were down-regulated. KEGG Pathway enrichment analysis showed that these differential metabolites were mainly involved in regulating lipid, protein, and purine metabolism PF-carps could require energy during hypoxia by enhancing the gluconeogenesis pathway with core glutamic acid and glutamine metabolism. A total of 63 differentially expressed metabolites were screened by a comparison between the reoxygenated groups and the hypoxic groups. Specifically, 15 were up-regulated, and 48 were down-regulated. The KEGG Pathway enrichment analysis supported that PF-carp could continue to gain energy by consuming glutamic acid and the glutamine accumulated during hypoxia and simultaneously weaken the ammonia-transferring effect of amino acids and the toxicity of ammonia. By consuming glycerophospholipids and maintaining the Prostaglandin E content, cell damage was improved, sphingosinol synthesis was reduced, and apoptosis was inhibited. Additionally, it could enhance the salvage synthesis and de novo synthesis of purine, reduce purine accumulation, promote the synthesis of nucleotide and energy carriers, and assist in recovering physiological metabolism. Overall, results explained the physiological regulation mechanism of PF-carp adapting to the acute changes of dissolved oxygen at the metabolic level and also provided novel evidence for physiological regulation of other fish in an environment with acute changes in dissolved oxygen levels.

15.
Anal Chem ; 94(25): 9074-9080, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35694855

RESUMEN

Fluorescent silicon nanodots have shown great prospects for bioimaging and biosensing applications. Although various fluorescent silicon-containing nanodots (SiNDs) have been developed, there are few reports about renal-clearable multicolor SiNDs. Herein, renal-clearable multicolor fluorescent SiNDs are synthesized by using silane molecules and organic dyes through a facile one-step hydrothermal method. The fluorescence of the resulting SiNDs can be tuned to blue (bSiNDs), green (gSiNDs), and red (rSiNDs) by simply changing the categories of silane reagents or dye molecules. The as-prepared SiNDs exhibit strong fluorescence with a quantum yield up to 72%, excellent photostability, and good biocompatibility with 12 h renal clearance rate as high as 86% ID. These properties enabled the SiNDs for tumor fluorescence imaging and H2O2 imaging in living cells and tissue through in situ reduction reaction-lighted fluorescence of the nanoprobe. Our results provide an invaluable methodology for the synthesis of renal-clearable multicolor SiNDs and their potential applications for fluorescence imaging and biomarker sensing. These SiNDs are also promising for various biological and biomedical applications.


Asunto(s)
Neoplasias , Puntos Cuánticos , Colorantes , Colorantes Fluorescentes , Humanos , Peróxido de Hidrógeno , Neoplasias/diagnóstico por imagen , Imagen Óptica , Silanos , Silicio
16.
J Asthma Allergy ; 15: 99-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35115789

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory disease featured by inflammation and remodeling of airway. Adipose-derived mesenchymal stem cell (ADSCs)-derived exosomal miRNAs have been suggested as promising therapeutic manners for diseases. METHODS: ADSCs and airway smooth muscle cells (ASMCs) were isolated from SD rats. Flow cytometry was conducted to detect the surface biomarkers of isolated cells. Exosomes were extracted by sequentially centrifuge method and identified by Western blotting and nanoparticle tracking analysis (NTA). Uptake of exosomes by ASMCs was detected by confocal assay. ASMCs were treated with platelet-derived growth factor-BB (PDGF-BB) to mimic cell remodeling and inflammation. Cell counting 8 (CCK-8), Transwell, and flow cytometry were performed to determine the viability, migration, and apoptosis of ASMCs. Release of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA). Levels of RNAs and proteins were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Interaction between miR-301a-3p and signal transducer and activator of transcription 3 (STAT3) was determined by luciferase reporter gene assay. The effect of Exosomal miR-301a-3p was analyzed in ovalbumin (OVA)-induced asthma mouse model. RESULTS: ADSCs-derived exosomes could be effectively internalized by ASMCs. Exosomal miR-301a-3p notably suppressed the PDGF-BB-stimulated proliferation and migration of ASMCs, and enhanced apoptosis, as well as decreased the secretion of inflammatory factors. MiR-301a-3p directly targeted the 3'UTR region of STAT3. STAT3 overexpression reversed the suppressive effects of exosomal miR-301a-3p on ASMCs under PDGF-BB stimulation. The expression of miR-301a-3p and STAT3 was negative correlation in specimen from patients with asthma. Exosomal miR-301a-3p inhibited OVA-induced lung injury by targeting STAT3 in mice. CONCLUSION: This study exposed that exosomal miR-301a-3p from ADSCs could effectively alleviate PDGF-BB-stimulated remodeling and inflammation of ASMCs via targeting STAT3, presented ADSCs-derived exosomal miR-301a-3p as a promising therapeutic approach for asthma.

17.
Nat Prod Res ; 36(20): 5206-5212, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34180325

RESUMEN

Two new physalins, 7α-hydroxy-5-deoxy-4-dehydrophysalin IX (1) and 5-deoxy-4-dehydrophysalin IX (2), together with six known compounds, luteolin (3), luteolin-7-O-glucoside (4), neoechinulin A (5), 3-(4-hydroxy-3-methoxyphenyl)-N-(4-methylphenyl)-2-propenamide (6), physalin D (7) and blumenol A (8) were isolated from Physalis alkekengi L. var. franchetii (Mast.) Makino. Their structures were elucidated by NMR spectroscopic analysis, HR-ESI-MS, X-ray crystallographic data analysis and comparison with the known compounds. Among them, compounds 5 and 6 were isolated from the genus Physalis for the first time. Compound 1 exhibited weak NAD(P)H: quinone reductase (QR) inducing activity.


Asunto(s)
Physalis , Quinona Reductasas , Luteolina , NAD , Physalis/química , Extractos Vegetales/química
18.
J Am Chem Soc ; 143(51): 21511-21518, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34872251

RESUMEN

The differentiation between missing linker defects and missing cluster defects in MOFs is difficult, thereby limiting the ability to correlate materials properties to a specific type of defects. Herein, we present a novel and easy synthesis strategy for the creation of solely "missing cluster defects" by preparing mixed-metal (Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn nodes. The resulting material has the reo UiO-66 structure, typical for well-defined missing cluster defects. The missing clusters are thoroughly characterized, including low-pressure Ar-sorption, iDPC-STEM at a low dose (1.5 pA), and XANES/EXAFS analysis. We show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster UiO-66 in CO2 sorption and heterogeneous catalysis.

19.
Natl Sci Rev ; 8(9): nwaa295, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691730

RESUMEN

In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.

20.
Angew Chem Int Ed Engl ; 60(39): 21565-21574, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34322988

RESUMEN

Protein kinases constitute a rich pool of biomarkers and therapeutic targets of tremendous diseases including cancer. However, sensing kinase activity in vivo while implementing treatments according to kinase hyperactivation remains challenging. Herein, we present a nanomediator-effector cascade system that can in situ magnify the subtle events of kinase-catalyzed phosphorylation via DNA amplification machinery to achieve kinase activity imaging and kinase-responsive drug release in vivo. In this cascade, the phosphorylation-mediated disassembly of DNA/peptide complex on the nanomediators initiated the detachment of fluorescent hairpin DNAs from the nanoeffectors via hybridization chain reaction (HCR), leading to fluorescence recovery and therapeutic cargo release. We demonstrated that this nanosystem simultaneously enabled trace protein kinase A (PKA) activity imaging and on-demand drug delivery for inhibition of tumor cell growth both in vitro and in vivo, affording a kinase-specific sense-and-treat paradigm for cancer theranostics.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , ADN/química , Doxorrubicina/farmacología , Nanopartículas/química , Técnicas de Amplificación de Ácido Nucleico , Péptidos/química , Proteínas Quinasas/metabolismo , Antibióticos Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Nanopartículas/metabolismo , Hibridación de Ácido Nucleico , Imagen Óptica , Péptidos/metabolismo , Fosforilación , Proteínas Quinasas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA