Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Adv Sci (Weinh) ; : e2402193, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569521

RESUMEN

Hydrogel-based zinc-air batteries (ZABs) are promising flexible rechargeable batteries. However, the practical application of hydrogel-based ZABs is limited by their short service life, narrow operating temperature range, and repair difficulty. Herein, a self-healing ionogel is synthesized by the photopolymerization of acrylamide and poly(ethylene glycol) monomethyl ether acrylate in 1-ethyl-3-methylimidazolium dicyanamide with zinc acetate dihydrate and first used as an electrolyte to fabricate self-healing ZABs. The obtained self-healing ionogel has a wide operating temperature range, good environmental and electrochemical stability, high ionic conductivity, satisfactory mechanical strength, repeatable and efficient self-healing properties enabled by the reversibility of hydrogen bonding, and the ability to inhibit the production of dendrites and by-products. Notably, the self-healing ionogel has the highest ionic conductivity and toughness compared to other reported self-healing ionogels. The prepared self-healing ionogel is used to assemble self-healing flexible ZABs with a wide operating temperature range. These ZABs have ultra-long cycling lives and excellent stability under harsh conditions. After being damaged, the ZABs can repeatedly self-heal to recover their battery performance, providing a long-lasting and reliable power supply for wearable devices. This work opens new opportunities for the development of electrolytes for ZABs.

2.
Angew Chem Int Ed Engl ; 63(22): e202403972, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38491769

RESUMEN

Recycling of carbon fiber-reinforced polymer composites (CFRCs) based on thermosetting plastics is difficult. In the present study, high-performance CFRCs are fabricated through complexation of aromatic pinacol-cross-linked polyurethane (PU-AP) thermosets with carbon fiber (CF) cloths. PU-AP thermosets exhibit a breaking strength of 95.5 MPa and toughness of 473.6 MJ m-3 and contain abundant hydrogen-bonding groups, which can have strong adhesion with CFs. Because of the high interfacial adhesion between CF cloths and PU-AP thermosets and high toughness of PU-AP thermosets, CF/PU-AP composites possess a high tensile strength of >870 MPa. Upon heating in N,N-dimethylacetamide (DMAc) at 100 °C, the aromatic pinacols in the CF/PU-AP composites can be cleaved, generating non-destructive CF cloths and linear polymers that can be converted to high-performance elastomers. The elastomers are mechanically robust, healable, reprocessable, and damage-resistant with an extremely high tensile strength of 74.2 MPa and fracture energy of 149.6 kJ m-2. As a result, dissociation of CF/PU-AP composites enables the recovery of reusable CF cloths and high-performance elastomers, thus realizing the upcycling of CF/PU-AP composites.

3.
Abdom Radiol (NY) ; 49(5): 1397-1410, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433144

RESUMEN

PURPOSE: To investigate the value of a multimodal deep learning (MDL) model based on computed tomography (CT) and magnetic resonance imaging (MRI) for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS: A total of 287 patients with HCC from our institution and 58 patients from another individual institution were included. Among these, 119 patients with only CT data and 116 patients with only MRI data were selected for single-modality deep learning model development, after which select parameters were migrated for MDL model development with transfer learning (TL). In addition, 110 patients with simultaneous CT and MRI data were divided into a training cohort (n = 66) and a validation cohort (n = 44). We input the features extracted from DenseNet121 into an extreme learning machine (ELM) classifier to construct a classification model. RESULTS: The area under the curve (AUC) of the MDL model was 0.844, which was superior to that of the single-phase CT (AUC = 0.706-0.776, P < 0.05), single-sequence MRI (AUC = 0.706-0.717, P < 0.05), single-modality DL model (AUCall-phase CT = 0.722, AUCall-sequence MRI = 0.731; P < 0.05), clinical (AUC = 0.648, P < 0.05), but not to that of the delay phase (DP) and in-phase (IP) MRI and portal venous phase (PVP) CT models. The MDL model achieved better performance than models described above (P < 0.05). When combined with clinical features, the AUC of the MDL model increased from 0.844 to 0.871. A nomogram, combining deep learning signatures (DLS) and clinical indicators for MDL models, demonstrated a greater overall net gain than the MDL models (P < 0.05). CONCLUSION: The MDL model is a valuable noninvasive technique for preoperatively predicting MVI in HCC.


Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Imagen por Resonancia Magnética , Invasividad Neoplásica , Tomografía Computarizada por Rayos X , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Imagen Multimodal/métodos , Anciano , Microvasos/diagnóstico por imagen , Valor Predictivo de las Pruebas , Adulto
4.
Angew Chem Int Ed Engl ; 63(7): e202316453, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38130147

RESUMEN

Although closed-loop recycling of dynamic covalent bond-based plastics does not require catalysts, their mechanical strength and chemical stability remain a major concern. In this study, closed-loop recyclable poly(aryl imine) (PAI) plastics with high mechanical strength and excellent chemical resistance are fabricated by copolymerizing aromatic amines and aromatic aldehydes through dynamic imine bonds. The resulting PAI plastic with a tensile strength of 58.2 MPa exhibits excellent chemical resistance and mechanical stability in acidic and basic aqueous solutions and various organic solvents. The PAI plastics can be depolymerized in a mixed solvent of tetrahydrofuran (THF)/HCl aqueous solution through the dissociation of imine bonds, and the monomers can be facilely recovered with high purity and isolated yields due to the solubility difference between the aromatic amines and aromatic aldehydes in selective solvents. The efficient closed-loop recycling of the PAI plastic can also be realized through monomer conversion because the hydrolysis of the aromatic aldehydes generates aromatic amines. The recovered monomers can be used to re-fabricate original PAI plastics. This PAI plastic can be selectively recovered from complicated mixed polymer waste streams due to the mild depolymerization conditions of the PAI plastic and its high stability in most organic solvents.

5.
Adv Mater ; 35(51): e2307990, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820715

RESUMEN

Extremely low hysteresis, high mechanical strength, superior toughness, and excellent healability are essential for stretchable ionic conductors to enhance their reliability and meet for cutting-edge applications. However, the fabrication of stretchable ionic conductors with such mutually exclusive properties remains challenging. Herein, extremely low-hysteresis and healable ionic conductors with a tensile strength of ≈8.9 MPa and toughness of ≈23.2 MJ m-3 are fabricated through the complexation of 4-carboxybenzaldehyde (CBA) grafted poly(vinyl alcohol) (PVA) (denoted as PVA-CBA) and poly (allylamine hydrochloride) (PAH) followed by acidification and ion-loading steps. The acidification step generates the PVA-CBA/PAH ionic conductors with in situ formed dynamic hydrophobic domains that lock and stabilize noncovalent interactions. This significantly minimizes the energy dissipation of the ionic conductors during cyclic mechanical loading (≤200% strain), resulting in ionic conductors with extremely low hysteresis (≈5%). The fractured ionic conductors can be healed at 60 °C to restore their original properties. Because of the extremely low hysteresis, the PVA-CBA/PAH ionic conductors show a highly stable and reproducible electrical response over 5000 uninterrupted loading-unloading cycles at a strain of 200%. The ionic conductor based sensors exhibit a high sensitivity to a wide range of strains (1-500%).

6.
Chemosphere ; 331: 138791, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37105306

RESUMEN

Membrane bioreactor (MBR), as a biological unit for wastewater treatment, has been proven to have the advantages of simple structure and high pollutant removal rate. However, membrane fouling limits its wide application, and it is crucial to adopt effective membrane fouling control methods. As a new type of membrane fouling control technology, electrically-enhanced MBR (EMBR) has attracted more interest recently. It uses the driving force of electric field to make pollutants flocculate or move away from the membrane surface to achieve the purpose of inhibiting membrane fouling. This paper expounds the configuration of EMBR in recent years, including the location of membrane components, the way of electric field application and the selection of electrode and membrane materials, and provides the latest development information in various aspects. The enhanced effect of electric field on the removal of comprehensive and refractory pollutants is outlined in detail. And from the perspective of sludge properties (EPS, SMP, sludge particle size, zeta potential and microbial activity), the influence of electric field on sludge characteristics and the relationship between the changes of sludge properties in EMBR and membrane fouling are discussed. Moreover, the electrochemical mechanisms of electric field alleviating membrane fouling are elucidated from electrophoresis, electrostatic repulsion, electroflocculation, electroosmosis, and electrochemical oxidation, and the regeneration and stability of EMBR are assessed. The existing challenges and future research directions are also proposed. This review could provide theoretical guidance and further studies for subsequent topic, and promoting the wide engineering applications of EMBR.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/química , Membranas Artificiales , Electricidad , Reactores Biológicos
7.
Adv Mater ; 35(20): e2211456, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36848671

RESUMEN

Current thermochromic materials used in smart windows still face challenges, such as poor mechanical and environmental stability, unsatisfactory solar modulation capacity, and low transparency. Herein, the first self-adhesive self-healing thermochromic ionogels with excellent mechanical and environmental stability, antifogging capability, transparency, and solar modulation capability by loading binary ionic liquids (ILs) into rational-designed self-healing poly(urethaneurea) with acylsemicarbazide (ASCZ) moieties that have reversible and multiple hydrogen bonds are reported and their feasibility as smart windows with reliability and long service life is demonstrated. The self-healing thermochromic ionogels can switch between transparent and opaque without leakage or shrinkage, by the constrained reversible phase separation of ILs within the ionogels. The ionogels have the highest transparency and solar modulation capability among reported thermochromic materials and such excellent solar modulation capability can be well maintained after undergoing 1000 transitions, stretches, and bends, and storage at -30 °C, 60 °C, 90% RH, and vacuum environment for 2 months. The formation of high-density hydrogen bonds among the ASCZ moieties contributes to the excellent mechanical strength of the ionogels and allows the thermochromic ionogels to spontaneously heal their damages and be fully recycled at room temperature without the loss of thermochromic capabilities.

8.
Adv Mater ; 35(21): e2300286, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36854256

RESUMEN

High-performance elastomers have gained significant interest because of their wide applications in industry and our daily life. However, it remains a great challenge to fabricate elastomers simultaneously integrating ultra-high mechanical strength, toughness, and excellent healing and recycling capacities. In this study, ultra-strong, healable, and recyclable elastomers are fabricated by dynamically cross-linking copolymers composed of rigid polyimide (PI) segments and soft poly(urea-urethane) (PUU) segments with hydrogen bonds. The elastomers, which are denoted as PIPUU, have a record-high tensile strength of ≈142 MPa and an extremely high toughness of ≈527 MJ m-3 . The structure of the PIPUU elastomer contains hydrogen-bond-cross-linked elastic matrix and homogenously dispersed rigid nanostructures. The rigid PI segments self-assemble to generate phase-separated nanostructures that serve as nanofillers to significantly strengthen the elastomers. Meanwhile, the elastic matrix is composed of soft PUU segments cross-linked with reversible hydrogen bonds, which largely enhance the strength and toughness of the elastomer. The dynamically cross-linked PIPUU elastomers can be healed and recycled to restore their original mechanical strength. Moreover, because of the excellent mechanical performance and the hydrophobic PI segments, the PIPUU elastomers are scratch-, puncture-, and water-resistant.

9.
Macromol Rapid Commun ; 44(8): e2300007, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36794467

RESUMEN

Proton exchange membranes (PEMs) with excellent durability and working stability are important for PEM fuel cells with extended service life and enhanced reliability. In this study, highly elastic, healable, and durable electrolyte membranes are fabricated by the complexation of poly(urea-urethane), ionic liquids (ILs), and MXene nanosheets (denoted as PU-IL-MX). The resulting PU-IL-MX electrolyte membranes have a tensile strength of ≈3.86 MPa and a strain at break of ≈281.89%. The PU-IL-MX electrolyte membranes can act as high temperature PEMs to conduct protons under an anhydrous condition of the temperatures above 100 °C. Importantly, the ultrahigh density of hydrogen-bond-cross-linked network renders PU-IL-MX membranes excellent IL retention properties. The membranes can maintain more than ≈98% of their original weight and show no decline of proton conductivity after being placed under highly humid conditions of ≈80 °C and relative humidity of ≈85% for 10 days. Moreover, due to the reversibility of hydrogen bonds, the membranes can heal damage under the working conditions of fuel cells to restore their original mechanical properties, proton conductivities, and cell performances.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanoestructuras , Poliuretanos , Protones , Poliuretanos/química , Enlace de Hidrógeno , Líquidos Iónicos/química , Electrólitos , Nanoestructuras/química , Elementos de Transición/química
10.
Adv Mater ; 35(7): e2208619, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36367361

RESUMEN

Development of closed-loop chemically recyclable plastics (CCRPs) that can be widely used in daily life can be a fundamental solution to the global plastic waste crisis. Hence, it is of great significance to develop easy-to-recycle CCRPs that possess superior or comparable material properties to the commodity plastics. Here, a novel dual crosslinked CCRP, namely, supramolecular covalent adaptable networks (supra-CANs), is reported, which not only displays mechanical properties higher than the strong and tough commodity polycarbonate, but also exhibits excellent solvent resistance as thermosets. The supra-CANs are constructed by introducing reversible noncovalent crosslinks into the dynamic covalent polymer networks, resulting in highly stiff and strong thermosets that also exhibit thermoplastic-like ductile and tough behaviors as well as reprocessability and rehealability. In great contrast, the analogs that do not have noncovalent crosslinks (CANs) show elastomeric properties with significantly decreased mechanical strength. Importantly, the developed supra-CANs and CANs can be converted back into the initial monomers in high yields and purity at room temperature, even with additives, which enables the sustainable polymer-monomer-polymer circulation. This work provides new design principles for high-performance chemically recyclable polymers as sustainable substitutes for the conventional plastics.

11.
ACS Appl Mater Interfaces ; 15(21): 25082-25090, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34935339

RESUMEN

Artificial hydrogel membranes with good biocompatibility are strongly needed in biological fields. The preparation of biocompatible hydrogel membranes simultaneously possessing high mechanical strength, excellent elasticity, and satisfactory self-healing properties remains a challenge. Herein, we demonstrate the preparation of such hydrogel membranes by complexation of sulfonate-containing polyurethane (SPU) and poly(acrylic acid) (PAA) in the presence of Zn2+ ions followed by swelling in water (denoted as SPU-PAA/Zn). Originating from the synergy of the coordination and hydrogen-bonding interactions and the reinforcement effect of the in situ formed hydrophobic domains, the SPU-PAA/Zn hydrogel membrane exhibits a high tensile strength of ∼7.1 MPa and a toughness of ∼30.4 MJ m-3. Moreover, the hydrogel membrane is highly elastic, which can restore to its initial state from an ∼500% strain within 40 min rest at room temperature without any external assistance. The dynamic noncovalent interactions and hydrophobic domains allow the fractured hydrogel membrane to heal and completely regain its original integrity and mechanical properties at room temperature. Both in vitro and in vivo tests confirm that the hydrogel membrane exhibits satisfactory biocompatibility and could be potentially used as a biological barrier membrane in surgical operations or artificial organs.

12.
Langmuir ; 38(30): 9050-9063, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35863752

RESUMEN

Noncovalently cross-linked polymeric materials generally exhibit lower mechanical robustness than traditional polymeric materials. Therefore, it is important to improve the mechanical properties of noncovalently cross-linked polymeric materials using an efficient and generalized approach. In this Perspective, we systematically summarized the recent development of noncovalently cross-linked polymeric materials reinforced by in situ-formed nanofillers. The synergy of high-density noncovalent interactions and in situ-formed rigid nanofillers provided an effective means for the fabrication of noncovalently cross-linked plastics with high mechanical strength. The design of in situ-formed tough nanofillers, which could deform and dissociate, endowed the noncovalently cross-linked hydrogels and elastomers with high toughness, excellent stretchability, elasticity, damage resistance, and damage tolerance. Benefiting from the well-designed in situ-formed nanofillers, these noncovalently cross-linked polymeric materials with enhanced mechanical strength still exhibited satisfactory healing, recycling, and reprocessing properties. Outlooks were provided to envision the remaining challenges to the further development and practical application of noncovalently cross-linked polymeric materials reinforced with in situ-formed nanofillers.

13.
Adv Sci (Weinh) ; 9(29): e2203418, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35904088

RESUMEN

Intrinsically stretchable organic electrochemical transistors (OECTs) are being pursued as the next-generation tissue-like bioelectronic technologies to improve the interfacing with the soft human body. However, the performance of current intrinsically stretchable OECTs is far inferior to their rigid counterparts. In this work, for the first time, the authors report intrinsically stretchable OECTs with overall performance benchmarkable to conventional rigid devices. In particular, oxygen level in the stretchable substrate is revealed to have a significant impact on the on/off ratio. By employing stretchable substrates with low oxygen permeabilities, the on/off ratio is elevated from ≈10 to a record-high value of ≈104 , which is on par with a rigid OECT. The device remained functional after cyclic stretching tests. This work demonstrates that intrinsically stretchable OECTs have the potential to serve as a new building block for emerging soft bioelectronic applications such as electronic skin, soft implantables, and soft neuromorphic computing.


Asunto(s)
Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Humanos , Oxígeno
14.
Front Microbiol ; 13: 840774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418969

RESUMEN

The competition between weeds and crops for soil nutrients is affected by soil microorganisms, which drive diverse ecological processes and are critical in maintaining the stability of agroecosystems. However, the effects of plant species identity, particularly between forage and weed, on soil microbial diversity, composition, and association are not well understood. Here, we investigate the soil physicochemical properties and bacterial/fungal communities in an agroecosystem with native alfalfa [Medicago stativa (Ms)] and five common weed species (Digitaria sanguinalis, Echinochloa crusgalli, Acalypha australis, Portulaca oleracea, and Chenopodium album) in the North China Plain. The five weeds had a lower plant carbon content than Ms. while the opposite was true for plant nitrogen and phosphorus concentrations. The Shannon diversity of bacterial and fungal communities of the five weeds were significantly lower than in Ms. Soil pH and PO4 3--P were identified as the most important factors in shaping the relative abundances of bacteria (Sphingomonadaceae) and fungi (Pleosporaceae), respectively. Importantly, the weeds greatly inhibited the growth of pathogenic fungi (Nectriaceae and Pleosporaceae). Bacterial co-occurrence networks depended on specific species, indicating that Ms. harbored co-occurrence networks that were more complex than those in the bacterial communities of other weed groups. Our study examines how soil nutrients and the soil microbial community structure of five weed species changed in an Ms. field. This analysis of the microbial ecological network enhances our understanding of the influence of weeds on the soil microbiome in agroecosystems.

15.
Acad Radiol ; 29 Suppl 1: S223-S228, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33160860

RESUMEN

RATIONALE AND OBJECTIVES: Peritumoral features have been suggested to be useful in improving the prediction performance of radiomic models. The aim of this study is to systematically investigate the prediction performance improvement for sentinel lymph node (SLN) status in breast cancer from peritumoral features in radiomic analysis by exploring the effect of peritumoral region sizes. MATERIALS AND METHODS: This retrospective study was performed using dynamic contrast-enhanced MRI scans of 162 breast cancer patients. The effect of peritumoral features was evaluated in a radiomics pipeline for predicting SLN metastasis in breast cancer. Peritumoral regions were generated by dilating the tumor regions-of-interest (ROIs) manually annotated by two expert radiologists, with thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm. The prediction models were established in the training set (∼67% of cases) using the radiomics pipeline with and without peritumoral features derived from different peritumoral thicknesses. The prediction performance was tested in an independent validation set (the remaining ∼33%). RESULTS: For this specific application, the accuracy in the validation set when using the two radiologists' ROIs could be both improved from 0.704 to 0.796 by incorporating peritumoral features. The choice of the peritumoral size could affect the level of improvement. CONCLUSION: This study systematically investigates the effect of peritumoral region sizes in radiomic analysis for prediction performance improvement. The choice of the peritumoral size is dependent on the ROI drawing and would affect the final prediction performance of radiomic models, suggesting that peritumoral features should be optimized in future radiomics studies.


Asunto(s)
Neoplasias de la Mama , Ganglio Linfático Centinela , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Humanos , Metástasis Linfática/diagnóstico por imagen , Estudios Retrospectivos , Ganglio Linfático Centinela/diagnóstico por imagen , Ganglio Linfático Centinela/patología
16.
Adv Mater ; 34(10): e2108232, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963016

RESUMEN

Solar anti-/deicing can solve icing problems by converting sunlight into heat. One of the biggest problems, which has long been plaguing the design of solar anti-/deicing surfaces, is that photothermal materials are always lightproof and appear black, because of the mutual exclusiveness between generating heat and retaining transparency. Herein, a highly transparent and scalable solar anti-/deicing surface is reported, which enables the coated glass to exhibit high transparency (>77% transmittance at 550 nm) and meanwhile causes a >30 °C surface temperature increase relative to the ambient environment under 1.0 sun illumination. Such a transparent anti-/deicing surface can be fabricated onto a large class of substrates (e.g., glass, ceramics, metals, plastics), by applying a solid omniphobic slippery coating onto layer-by-layer-assembled ultrathin MXene multilayers. Hence, the surface possesses a self-cleaning ability to shed waterborne and oil-based liquids thanks to residue-free slipping motion. Passive anti-icing and active deicing capabilities are, respectively, obtained on the solar thermal surface, which effectively prevents water from freezing and simultaneously melts pre-formed ice and thick frost. The self-cleaning effect enables residue-free removal of unfrozen water and interfacially melted ice/frost to boost the anti-/deicing efficiency. Importantly, the surface is capable of self-healing under illumination to repair physical damage and chemical degradation.

17.
Sci Total Environ ; 790: 148258, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380247

RESUMEN

The ecological consequences of soil salinization, one of the major causes of soil degradation worldwide, on soil carbon (C) emissions are well known, but less is known about the related microbial C metabolic function. We conducted laboratory incubation experiments on soil samples under a salt gradient at four levels (non-saline, low, medium, and high salinity soils) from coastal saline-alkaline soil of the Yellow River Delta, China, to assess the role of soil salinity in regulating C emissions and microbial abundance. We also evaluated the associations between salt content and the read number of microbial C metabolism genes by determining the soil metagenomes. We found that soil salinity was negatively related to soil C, nitrogen (N) content, C emissions, bacterial gene copy number, and the relative abundances of Actinobacteria, Thermoleophilia, and Betaproteobacteria, but positively related to the C/N ratio and the relative abundance of Gemaproteobacteria and Halobacteria. Increases in soil salinity correlated with decreases in carbohydrate metabolism and gene abundances of glycosyl transferases and glycoside hydrolases based on the metagenomic data. In contrast, the enzyme active genes of carbohydrate esterases and auxiliary activities were positively related to soil salinity. This study provides a clear understanding of the response of soil microbial communities and their C metabolic functions to soil salinity. We offer evidence that soil salinity has significant effects on microbial communities and soil C metabolic functions, resulting in an overall negative effect on soil C emissions.


Asunto(s)
Salinidad , Suelo , Carbono , China , Ríos , Microbiología del Suelo
18.
Molecules ; 26(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299463

RESUMEN

Fabricating electrical double-layer capacitors (EDLCs) with high energy density for various applications has been of great interest in recent years. However, activated carbon (AC) electrodes are restricted to a lower operating voltage because they suffer from instability above a threshold potential window. Thus, they are limited in their energy storage. The deposition of inorganic compounds' atomic layer deposition (ALD) aiming to enhance cycling performance of supercapacitors and battery electrodes can be applied to the AC electrode materials. Here, we report on the investigation of zinc oxide (ZnO) coating strategy in terms of different pulse times of precursors, ALD cycles, and deposition temperatures to ensure high electrical conductivity and capacitance retention without blocking the micropores of the AC electrode. Crystalline ZnO phase with its optimal forming condition is obtained preferably using a longer precursor pulse time. Supercapacitors comprising AC electrodes coated with 20 cycles of ALD ZnO at 70 °C and operated in TEABF4/acetonitrile organic electrolyte show a specific capacitance of 23.13 F g-1 at 5 mA cm-2 and enhanced capacitance retention at 3.2 V, which well exceeds the normal working voltage of a commercial EDLC product (2.7 V). This work delivers an additional feasible approach of using ZnO ALD modification of AC materials, enhancing and promoting stable EDLC cells under high working voltages.

19.
Sci Rep ; 11(1): 12870, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145370

RESUMEN

Soil salinization is an increasingly serious problem and decreases crop yields in the Yellow River Delta (YRD), but its effects on bacterial community and diversity at the phylum level are not well known. We used high-throughput sequencing of soil bacterial 16S rRNA to identify soil bacterial communities and diversity across a gradient of soil salinity (electrical conductivity), namely, S1: low salinity level (1.78 ds/m), S2: medium salinity level (3.16 ds/m), S3: high salinity level (17.26 ds/m), S4: extreme salinity level (34.41 ds/m), and a non-salted site as the control (CK, 0.92 ds/m). Our results indicated the significantly higher values of soil C/N ratio in S2, S3, and S4 compared with that in CK. Significantly lower values of the Shannon and Chao 1 indexes were observed in S4 compared with the CK (p < 0.05). High salinity decreased the relative abundance of Actinobacteria and Acidobacteria, but increased that of Gemmatimonadetes and Bacteroidetes. Additionally, the Shannon diversity of Bacteroidetes increased by 15.5% in S4 compared with that in the CK. Our results indicate that soil salt is a main factor regulating bacterial phyla diversity and community in the extremely saline-alkaline soils of YRD. The high abundance and diversity of Bacteroidetes can be used for saline-alkali land restoration.

20.
Adv Mater ; 33(27): e2101498, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34062022

RESUMEN

Spider silk is one of the most robust natural materials, which has extremely high strength in combination with great toughness and good elasticity. Inspired by spider silk but beyond it, a healable and recyclable supramolecular elastomer, possessing superhigh true stress at break (1.21 GPa) and ultrahigh toughness (390.2 MJ m-3 ), which are, respectively, comparable to and ≈2.4 times higher than those of typical spider silk, is developed. The elastomer has the highest tensile strength (ultimate engineering stress, 75.6 MPa) ever recorded for polymeric elastomers, rendering it the strongest and toughest healable elastomer thus far. The hyper-robust elastomer exhibits superb crack tolerance with unprecedentedly high fracture energy (215.2 kJ m-2 ) that even exceeds that of metals and alloys, and superhigh elastic restorability allowing dimensional recovery from elongation over 12 times. These extraordinary mechanical performances mainly originate from the meticulously engineered hydrogen-bonding segments, consisting of multiple acylsemicarbazide and urethane moieties linked with flexible alicyclic hexatomic spacers. Such hydrogen-bonding segments, incorporated between extensible polymer chains, aggregate to form geometrically confined hydrogen-bond arrays resembling those in spider silk. The hydrogen-bond arrays act as firm but reversible crosslinks and sacrificial bonds for enormous energy dissipation, conferring exceptional mechanical robustness, healability, and recyclability on the elastomer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...