Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.136
Filtrar
1.
Sci Total Environ ; 931: 172936, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701923

RESUMEN

Nitrous oxide (N2O) emission from composting is a significant contributor to greenhouse effect and ozone depletion, which poses a threat to environment. To address the challenge of mitigating N2O emission during composting, this study investigated the response of N2O emission and denitrifier communities (detected by metagenome sequencing) to aeration intensities of 6 L/min (C6), 12 L/min (C12), and 18 L/min (C18) in cattle manure composting using multi-factor interaction analysis. Results showed that N2O emission occurred mainly at mesophilic phase. Cumulative N2O emission (QN2O, 9.79 mg·kg-1 DW) and total nitrogen loss (TN loss, 16.40 %) in C12 composting treatment were significantly lower than those in the other two treatments. The lower activity of denitrifying enzymes and the more complex and balanced network of denitrifiers and environmental factors might be responsible for the lower N2O emission. Denitrification was confirmed to be the major pathway for N2O production. Moisture content (MC) and Luteimonas were the key factors affecting N2O emission, and nosZ-carrying denitrifier played a significant role in reducing N2O emission. Although relative abundance of nirS was lower than that of nirK significantly (P < 0.05), nirS was the key gene influencing N2O emission. Community composition of denitrifier varied significantly with different aeration treatments (R2 = 0.931, P = 0.001), and Achromobacter was unique to C12 at mesophilic phase. Physicochemical factors had higher effect on QN2O, whereas denitrifying genes, enzymes and NOX- had lower effect on QN2O in C12. The complex relationship between N2O emission and the related factors could be explained by multi-factor interaction analysis more comprehensively. This study provided a novel understanding of mechanism of N2O emission regulated by aeration intensity in composting.

2.
Cell Death Differ ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719927

RESUMEN

The dynamic balance of DNA methylation and demethylation is required for erythropoiesis. Our previous transcriptomic analyses revealed that DNA methyltransferase 1 (DNMT1) is abundantly expressed in erythroid cells at all developmental stages. However, the role and molecular mechanisms of DNMT1 in human erythropoiesis remain unknown. Here we found that DNMT1 deficiency led to cell cycle arrest of erythroid progenitors which was partially rescued by treatment with a p21 inhibitor UC2288. Mechanically, this is due to decreased DNA methylation of p21 promoter, leading to upregulation of p21 expression. In contrast, DNMT1 deficiency led to increased apoptosis during terminal stage by inducing endoplasmic reticulum (ER) stress in a p21 independent manner. ER stress was attributed to the upregulation of RPL15 expression due to the decreased DNA methylation at RPL15 promoter. The upregulated RPL15 expression subsequently caused a significant upregulation of core ribosomal proteins (RPs) and thus ultimately activated all branches of unfolded protein response (UPR) leading to the excessive ER stress, suggesting a role of DNMT1 in maintaining protein homeostasis during terminal erythroid differentiation. Furthermore, the increased apoptosis was significantly rescued by the treatment of ER stress inhibitor TUDCA. Our findings demonstrate the stage-specific role of DNMT1 in regulating human erythropoiesis and provide new insights into regulation of human erythropoiesis.

3.
Platelets ; 35(1): 2347331, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38722091

RESUMEN

Platelet-rich plasma (PRP) holds promise as a therapeutic modality for wound healing; however, immediate utilization encounters challenges related to volume, concentration, and consistency. Cryopreservation emerges as a viable solution, preserving PRP's bioactive components and extending its shelf life. This study explores the practicality and efficacy of cryopreserved platelet-rich plasma (cPRP) in wound healing, scrutinizing both cellular mechanisms and clinical implications. Fresh PRP and cPRP post freeze-thaw underwent assessment in macrophage, fibroblast, and endothelial cell cultures. The impact of cPRP on active component release and cell behavior pertinent to wound healing was evaluated. Varied concentrations of cPRP (1%, 5%, 10%) were examined for their influence on cell polarization, migration, and proliferation. The results showed minimal changes in cPRP's IL-1ß levels, a slight decrease in PDGF-BB, and superior effects on macrophage M2 polarization and fibroblast migration, while no statistical significance was observed in endothelial cell angiogenesis and proliferation. Remarkably, 5% PRP exhibited the most significant stimulation among all cPRP concentrations, notably impacting cell proliferation, angiogenesis, and migration. The discussion underscores that cPRP maintains platelet phenotype and function over extended periods, with 5% cPRP offering the most favorable outcomes, providing a pragmatic approach for cold storage to extend post-thaw viability and amplify therapeutic effects.


What is the context? Platelet-rich plasma (PRP) is a potential bioactive material for wound healing, but using it immediately faces issues like volume, concentration, and consistency.Low-temperature freezing is a method employed to preserve PRP. However, the current understanding of the effects of the freezing-thawing process on the components of PRP and its impact on cells relevant to wound healing remains unclear.What is new? This study explores the feasibility and effectiveness of using cryopreserved PRP at −80°C for promoting wound healing. This research stands out for its focus on cellular responses and practical implications in therapeutic contexts.To understand their distinct impact on different cell types relevant to wound healing, the study meticulously examined various final concentrations of cPRP (1%, 5%, 10%).The study identified the superior effects of 5% cPRP on crucial cellular activities, notably in cell polarization, proliferation, angiogenesis, and migration.What is the impact? Low-temperature freezing can be considered an effective method for PRP preservation.Some bioactive components in cPRP exhibit subtle changes; however, these changes result in better effects on certain cell types related to healing.The study illustrates that all concentrations of cPRP effectively enhance cell proliferation, migration, and differentiation, emphasizing the comparable efficacy of cryopreserved PRP to non-cryopreserved PRP.


Asunto(s)
Criopreservación , Plasma Rico en Plaquetas , Cicatrización de Heridas , Plasma Rico en Plaquetas/metabolismo , Humanos , Criopreservación/métodos , Proliferación Celular , Movimiento Celular , Fibroblastos/metabolismo
4.
Chemosphere ; : 142287, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723685

RESUMEN

Sulfamethoxazole (SMX), a widely utilized antibiotic, was continually detected in the environment, causing serious risks to aquatic ecology and water security. In this study, carbon nanotubes (CNTs) with abundant defects were developed by argon plasma-etching technology to enhance the activation of persulfate (PS, including peroxymonosulfate (PMS) and peroxydisulfate (PDS) ) for SMX degradation while reducing environmental toxicity. Obviously, the increase of ID/IG value from 0.980 to 1.333 indicated that Ar plasma-etching successfully introduced rich defects into CNTs. Of note, Ar-90-CNT, whose Ar plasma-etching time was 90 min with optimum catalytic performance, exhibited a significant discrepancy between PMS activation and PDS activation. Interestingly, though the Ar-90-CNT/PDS system (kobs = 0.0332 min-1) was more efficient in SMX elimination than the Ar-90-CNT/PMS system (kobs = 0.0190 min-1), Ar plasma-etching treatment had no discernible enhancement in the catalytic efficiency of MWCNT for PDS activation. Then the discrepancy on activation mechanism between PMS and PDS was methodically investigated through quenching experiments, electron spin resonance (ESR), chemical probes, electrochemical measurements and theoretical calculations, and the findings unraveled that the created vacancy defects were the ruling active sites for the production of dominated singlet oxygen (1O2) in the Ar-90-CNT/PMS system to degrade SMX, while the electron transfer pathway (ETP), originated from PDS activation by the inherent edge defects, was the central pathway for SMX removal in the Ar-90-CNT/PDS system. Based on the toxicity test of Microcystis aeruginosa, the Ar-90-CNT/PDS system was more effective in alleviating environmental toxicity during SMX degradation. These findings not only provide insights into the discrepancy between PMS activation and PDS activation via carbon-based materials with controlled defects regulated by the plasma-etching strategy, but also efficiently degrade sulfonamide antibiotics and reduce the toxicity of their products.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38705925

RESUMEN

A series of ZnO decorated reduced graphene oxide (rGO) (ZnrGOx) with different doping ratios were synthesized by the alkaline hydrothermal method using graphene oxide (GO) and Zn(NO3)2·6H2O as precursors, and subsequently used for the adsorption study of Cr(VI) in water. The morphology, crystalline phase structure, and surface elemental properties of ZnrGOx composites were revealed by XRD, SEM, BET, FT-IR, and XPS characterizations. The results showed that ZnO nanoparticles can be clearly seen on the surface of layered rGO. Meanwhile, as the doping rate increased, the C = C double bonds were broken and more carboxylic acid groups formed in ZnrGOx. In addition, the ZnrGO0.1 composite had the most excellent adsorption performance and good stability, and reusability. The adsorption removal rate of Cr(VI) can reach 99%, and the maximum adsorption amount of Cr(VI) was 68.9655 mg/g in 3 h. The isothermal and kinetic model simulations showed that Cr(VI) adsorption on ZnrGO0.1 composite is a chemical adsorption process, spontaneous and endothermic. Based on the concentrations of different valence states of Cr in the solid and liquid phases, 40% of Cr(VI) was reduced to Cr(III) on the surface of ZnrGO0.1 composite. Moreover, the adsorption-reduction mechanisms of Cr(VI) on ZnrGO0.1 composite were further elucidated. The ZnrGO0.1 composite manifested great potential as an efficient adsorbent for Cr(VI) removal.

6.
Sci Rep ; 14(1): 9983, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693143

RESUMEN

The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.


Asunto(s)
Doxorrubicina , Hidrogeles , Estructuras Metalorgánicas , Metacrilatos , Nanopartículas , Cicatrización de Heridas , Animales , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Cicatrización de Heridas/efectos de los fármacos , Nanopartículas/química , Hidrogeles/química , Ratas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Gelatina/química , Cerio/química , Cerio/farmacología , Zeolitas/química , Zeolitas/farmacología , Línea Celular Tumoral , Masculino , Imidazoles/química , Imidazoles/administración & dosificación , Imidazoles/farmacología , Ratas Sprague-Dawley
7.
Front Pharmacol ; 15: 1378034, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694922

RESUMEN

Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.

8.
Int J Biol Macromol ; : 132314, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740160

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is an annual coarse cereal from the Polygonaceae family, known for its high content of flavonoid compounds, particularly rutin. But so far, the mechanisms of the flavonoid transport and storage in Tartary buckwheat (TB) remain largely unexplored. This study focuses on ATP-binding cassette transporters subfamily C (ABCC) members, which are crucial for the biosynthesis and transport of flavonoids in plants. The evolutionary and expression pattern analyses of the ABCC genes in TB identified an ABCC protein gene, FtABCC2, that is highly correlated with rutin synthesis. Subcellular localization analysis revealed that FtABCC2 protein is specifically localized to the vacuole membrane. Heterologous expression of FtABCC2 in Saccharomyces cerevisiae confirmed that its transport ability of flavonoid glycosides such as rutin and isoquercetin, but not the aglycones such as quercetin and dihydroquercetin. Overexpression of FtABCC2 in TB hairy root lines resulted in a significant increase in total flavonoid and rutin content (P < 0.01). Analysis of the FtABCC2 promoter revealed potential cis-acting elements responsive to hormones, cold stress, mechanical injury and light stress. Overall, this study demonstrates that FtABCC2 can efficiently facilitate the transport of rutin into vacuoles, thereby enhancing flavonoids accumulation. These findings suggest that FtABCC2 is a promising candidate for molecular-assisted breeding aimed at developing high-flavonoid TB varieties.

9.
Sci Total Environ ; 929: 172551, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643870

RESUMEN

The rapid expansion of green areas in China has enhanced carbon sinks, but it also presents challenges regarding increased biogenic volatile organic compound (BVOC) emissions. This study examines the impact of greening trends on BVOC emissions in China from 1985 to 2001 and from 2001 to 2022, focusing on evaluating long-term trends in BVOC emissions within eight afforestation project areas during these two periods. Emission factors for 62 dominant tree species and provincial Plant Functional Types were updated. The BVOC emission inventories were developed for China at a spatial resolution of 27 km × 27 km using the Model of Emissions of Gases and Aerosols from Nature. The national BVOC emissions in 2018 were estimated at 54.24 Tg, with isoprene, monoterpenes, sesquiterpenes, and other BVOC contributing 26.94 Tg, 2.29 Tg, 0.44 Tg, and 24.57 Tg, respectively. Over the past 37 years, BVOC emissions experienced a slow growth rate of 1.7 % (0.79 Tg) during 1985-2001, followed by a significant increase of 12 % (6 Tg) from 2001 to 2022. BVOC emissions in the eight afforestation project areas increased by 2 % and 20 % during the two periods. From 2001 to 2022, at the regional scale, the Shelterbelt program for the middle reaches of the Yellow River area exhibited the largest rate of increase (43 %) in BVOC emissions. The Shelterbelt program for the upper and middle reaches of the Yangtze River made the most largest contribution (45 %) to the national increase in BVOC emissions. Afforestation projects have shifted towards planting more broadleaf trees than needleleaf trees from 2001 to 2022, and there also showed a change from herbaceous plants to broadleaf trees. These trends have led to higher average emission factors for vegetation, resulting in increased BVOC emissions. It underscores the importance of considering BVOC emissions when evaluating afforestation initiatives, emphasizing the need to balancing ecological benefits with potential atmospheric consequences.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles , China , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Bosques , Árboles , Contaminación del Aire/estadística & datos numéricos , Agricultura Forestal
10.
Hum Genomics ; 18(1): 41, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654324

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are prevalent birth defects. Although pathogenic CAKUT genes are known, they are insufficient to reveal the causes for all patients. Our previous studies indicated GEN1 as a pathogenic gene of CAKUT in mice, and this study further investigated the correlation between GEN1 and human CAKUT. METHODS: In this study, DNA from 910 individuals with CAKUT was collected; 26 GEN1 rare variants were identified, and two GEN1 (missense) variants in a non-CAKUT group were found. Mainly due to the stability results of the predicted mutant on the website, in vitro, 10 variants (eight CAKUT, two non-CAKUT) were selected to verify mutant protein stability. In addition, mainly based on the division of the mutation site located in the functional region of the GEN1 protein, 8 variants (six CAKUT, two non-CAKUT) were selected to verify enzymatic hydrolysis, and the splice variant GEN1 (c.1071 + 3(IVS10) A > G) was selected to verify shear ability. Based on the results of in vitro experiments and higher frequency, three sites with the most significant functional change were selected to build mouse models. RESULTS: Protein stability changed in six variants in the CAKUT group. Based on electrophoretic mobility shift assay of eight variants (six CAKUT, two non-CAKUT), the enzymatic hydrolysis and DNA-binding abilities of mutant proteins were impaired in the CAKUT group. The most serious functional damage was observed in the Gen1 variant that produced a truncated protein. A mini-gene splicing assay showed that the variant GEN1 (c.1071 + 3(IVS10) A > G) in the CAKUT group significantly affected splicing function. An abnormal exon10 was detected in the mini-gene splicing assay. Point-mutant mouse strains were constructed (Gen1: c.1068 + 3 A > G, p.R400X, and p.T105R) based on the variant frequency in the CAKUT group and functional impairment in vitro study and CAKUT phenotypes were replicated in each. CONCLUSION: Overall, our findings indicated GEN1 as a risk factor for human CAKUT.


Asunto(s)
Anomalías Urogenitales , Reflujo Vesicoureteral , Animales , Femenino , Humanos , Masculino , Ratones , Predisposición Genética a la Enfermedad , Riñón/anomalías , Riñón/patología , Riñón/metabolismo , Mutación/genética , Estabilidad Proteica , Factores de Riesgo , Sistema Urinario/anomalías , Sistema Urinario/patología , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología , Reflujo Vesicoureteral/genética , Reflujo Vesicoureteral/patología
11.
J Adv Res ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609051

RESUMEN

The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.

12.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660022

RESUMEN

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Asunto(s)
Disponibilidad Biológica , Carbono , Paeonia , Tamaño de la Partícula , Ratas Sprague-Dawley , Solubilidad , Xantonas , Xantonas/farmacocinética , Xantonas/química , Xantonas/administración & dosificación , Animales , Carbono/química , Carbono/farmacocinética , Masculino , Ratas , Paeonia/química , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Línea Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Supervivencia Celular/efectos de los fármacos
13.
Chemosphere ; : 142035, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663680

RESUMEN

Hexafluoropropylene oxide trimer acid (HFPO-TA) has been found to cause hepatotoxicity, lipotoxicity, and cytotoxicity. However, the effects of HFPO-TA exposure on nervous system toxicity are still unclear. Here, six-week-old male C57BL/6J mice were treated with 2, 20, and 200 µg/L HFPO-TA for six weeks. The untargeted transcriptome analysis was employed to identify differentially expressed mRNAs in the tissue of mouse hippocampi. Then, the levels of neurotransmitters were detected by ELISA analysis in hippocampal and colonic tissues. Real-time quantitative PCR and western blotting analysis were performed to detect the expression of genes associated with modulation of serotonin (5-HT) metabolism and blood-brain barrier. HFPO-TA exposure reduced the mRNA and protein expression of several tight junction protein-coded genes, including Occludin, Claudin-1, and ZO-1, in mice hippocampi, indicating that the blood-brain barrier was disrupted. Moreover, HFPO-TA exposure elevated the expression of neuroinflammatory factors, including TNF-α, IL-6, IL-1ß, TGF-α, and TGF-ß. Analysis of hippocampal transcriptomics suggested that HFPO-TA exposure would impair 5-HT generation and metabolic pathways. In keeping with this prediction, our findings confirmed that the levels of several neurotransmitters, including tryptophan (TRP), 5-HT, 5-HTP, and 5-HIAA, were all impaired by HFPO-TA exposure in the serum, colon, and hippocampus, as was the colonic and hippocampal expression of TRP and 5-HT metabolism-related genes such as SERT, MAO-A, and IDO. These results suggest that HFPO-TA nervous system toxicity in mice may be partly modulated by the brain-gut axis and that HFPO-TA exposure may negatively impact human mental health.

14.
Adv Drug Deliv Rev ; 209: 115320, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643841

RESUMEN

The etiology of cancers is multifactorial, with certain bacteria established as contributors to carcinogenesis. As the understanding of carcinogenic bacteria deepens, interest in cancer treatment through bacterial eradication is growing. Among emerging antibacterial platforms, cell membrane-coated nanoparticles (CNPs), constructed by enveloping synthetic substrates with natural cell membranes, exhibit significant promise in overcoming challenges encountered by traditional antibiotics. This article reviews recent advancements in developing CNPs for targeting carcinogenic bacteria. It first summarizes the mechanisms of carcinogenic bacteria and the status of cancer treatment through bacterial eradication. Then, it reviews engineering strategies for developing highly functional and multitasking CNPs and examines the emerging applications of CNPs in combating carcinogenic bacteria. These applications include neutralizing virulence factors to enhance bacterial eradication, exploiting bacterium-host binding for precise antibiotic delivery, and modulating antibacterial immunity to inhibit bacterial growth. Overall, this article aims to inspire technological innovations in developing CNPs for effective cancer treatment through oncogenic bacterial targeting.

15.
PeerJ ; 12: e17108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650652

RESUMEN

Background: In papillary thyroid carcinoma (PTC) patients with Hashimoto's thyroiditis (HT), preoperative ultrasonography frequently reveals the presence of enlarged lymph nodes in the central neck region. These nodes pose a diagnostic challenge due to their potential resemblance to metastatic lymph nodes, thereby impacting the surgical decision-making process for clinicians in terms of determining the appropriate surgical extent. Methods: Logistic regression analysis was conducted to identify independent risk factors associated with central lymph node metastasis (CLNM) in PTC patients with HT. Then a prediction model was developed and visualized using a nomogram. The stability of the model was assessed using ten-fold cross-validation. The performance of the model was further evaluated through the use of ROC curve, calibration curve, and decision curve analysis. Results: A total of 376 HT PTC patients were included in this study, comprising 162 patients with CLNM and 214 patients without CLNM. The results of the multivariate logistic regression analysis revealed that age, Tg-Ab level, tumor size, punctate echogenic foci, and blood flow grade were identified as independent risk factors associated with the development of CLNM in HT PTC. The area under the curve (AUC) of this model was 0.76 (95% CI [0.71-0.80]). The sensitivity, specificity, accuracy, and positive predictive value of the model were determined to be 88%, 51%, 67%, and 57%, respectively. Conclusions: The proposed clinic-ultrasound-based nomogram in this study demonstrated a favorable performance in predicting CLNM in HT PTCs. This predictive tool has the potential to assist clinicians in making well-informed decisions regarding the appropriate extent of surgical intervention for patients.


Asunto(s)
Enfermedad de Hashimoto , Metástasis Linfática , Nomogramas , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Enfermedad de Hashimoto/patología , Enfermedad de Hashimoto/diagnóstico por imagen , Enfermedad de Hashimoto/complicaciones , Masculino , Femenino , Metástasis Linfática/patología , Metástasis Linfática/diagnóstico por imagen , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/secundario , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/cirugía , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Factores de Riesgo , Ultrasonografía , Cuello/patología , Cuello/diagnóstico por imagen , Ganglios Linfáticos/patología , Ganglios Linfáticos/diagnóstico por imagen , Modelos Logísticos , Curva ROC
16.
Anal Chem ; 96(16): 6356-6365, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588440

RESUMEN

Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.

17.
Oncol Rep ; 51(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38624021

RESUMEN

It has been reported that PL2L60 proteins, a product of PIWIL2 gene which might be activated by an intragenic promoter, could mediate a common pathway specifically for tumorigenesis. In the present study, it was further identified by using western blot assay that the PL2L60 proteins could be degraded in cancer cells through a mechanism of selective autophagy in response to oxidative stress. The PL2L60 was downregulated in various types of cancer cells under the hypoxic condition independently of HIF­1α, resulting in apoptosis of cancer cells. Inhibition of autophagy by small interfering RNA targeting of either Beclin­1 (BECN1) or Atg5 resulted in restoration of PL2L60 expression in hypoxic cancer cell. The hypoxic degradation of PL2L60 was also blocked by the attenuation of the autophagosome membrane protein Atg8/microtubule­associated protein 1 light chain 3 (LC3) or autophagy cargo protein p62 expression. Surprisingly, Immunofluorescence analysis demonstrated that LC3 could be directly bound to PL2L60 and was required for the transport of PL2L60 from the nucleus to the cytoplasm for lysosomal flux under basal or activated autophagy in cancer cells. Moreover, flow cytometric analysis displayed that knocking down of PL2L60 mRNA but not PIWIL2 mRNA effectively inhibited cancer cell proliferation and promoted apoptosis of cancer cells. The similar results were obtained from in vivo tumorigenic experiment, in which PL2L60 downregulation in necroptosis areas was confirmed by immunohistochemistry. These results suggested that various cancer could be suppressed by promoting autophagy. The present study revealed a key role of autophagic degradation of PL2L60 in hypoxia­induced cancer cell death, which could be used as a novel therapeutic target of cancer.


Asunto(s)
Neoplasias , Humanos , ARN Interferente Pequeño/metabolismo , Hipoxia/metabolismo , Apoptosis , Autofagia , Estrés Fisiológico , ARN Mensajero , Proteínas Argonautas/metabolismo
18.
J Exp Clin Cancer Res ; 43(1): 96, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561776

RESUMEN

Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/análisis , Recurrencia Local de Neoplasia , Biopsia Líquida/métodos , Pronóstico , Células Neoplásicas Circulantes/metabolismo
19.
Hum Mol Genet ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38679805

RESUMEN

Late-Onset Alzheimer's Disease (LOAD) is a heterogeneous neurodegenerative disorder with complex etiology and high heritability. Its multifactorial risk profile and large portions of unexplained heritability suggest the involvement of yet unidentified genetic risk factors. Here we describe the "whole person" genetic risk landscape of polygenic risk scores for 2218 traits in 2044 elderly individuals and test if novel eigen-PRSs derived from clustered subnetworks of single-trait PRSs can improve the prediction of LOAD diagnosis, rates of cognitive decline, and canonical LOAD neuropathology. Network analyses revealed distinct clusters of PRSs with clinical and biological interpretability. Novel eigen-PRSs (ePRS) from these clusters significantly improved LOAD-related phenotypes prediction over current state-of-the-art LOAD PRS models. Notably, an ePRS representing clusters of traits related to cholesterol levels was able to improve variance explained in a model of the brain-wide beta-amyloid burden by 1.7% (likelihood ratio test P = 9.02 × 10-7). All associations of ePRS with LOAD phenotypes were eliminated by the removal of APOE-proximal loci. However, our association analysis identified modules characterized by PRSs of high cholesterol and LOAD. We believe this is due to the influence of the APOE region from both PRSs. We found significantly higher mean SNP effects for LOAD in the intersecting APOE region SNPs. Combining genetic risk factors for vascular traits and dementia could improve current single-trait PRS models of LOAD, enhancing the use of PRS in risk stratification. Our results are catalogued for the scientific community, to aid in generating new hypotheses based on our maps of clustered PRSs and associations with LOAD-related phenotypes.

20.
Food Funct ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38680120

RESUMEN

Diabetes-associated cognitive dysfunction (DCD) is a severe complication of diabetes mellitus (DM), threatening the life quality of the diabetic population. However, there is still a lack of effective approaches for its intervention. Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that was not previously investigated for its effect on DCD. In this study, EPA was found to improve DCD in a mouse model of type 2 DM (T2DM) induced by streptozotocin and a high-fat diet, exhibiting profound protective effects on cognitive dysfunction, neuronal loss, and cerebral oxidative stress and inflammation. While EPA did not attenuate advanced glycation end product-induced neuron injury, we hypothesized that EPA might protect neurons by regulating microglia polarization, the effect of which was confirmed by the co-culture of neurons and lipopolysaccharide-stimulated microglia. RNA sequencing identified nuclear factor-erythroid-2-related factor 2 (NRF2) antioxidant signaling as a major target of EPA in microglia. Mechanistically, EPA increased sequestosome-1 (SQSTM1 or P62) levels that might structurally inhibit Kelch-like ECH associated protein 1 (KEAP1), leading to nuclear translocation of NRF2. P62 and NRF2 predominantly mediated EPA's effect since the knockdown of P62 or NRF2 abolished EPA's protective effect on microglial oxidative stress and inflammation and sequential neuron injuries. Moreover, the regulation of P62/KEPA1/NRF2 axes by EPA was confirmed in the hippocampi of diabetic mice. The present work presents EPA as an effective nutritional approach and microglial P62/KEAP1/NRF2 as molecular targets for the intervention of DCD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...