Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38231258

RESUMEN

Trabeculae bone undergoes directional growth along the applied force under physiological loading. The growth of bone structure relies on the coordinated interplay among osteocytes, osteoblasts, and osteoclasts. Under normal circumstances, bone remodeling maintains a state of equilibrium. Excessive bone formation can lead to osteosclerosis, while excessive bone resorption can result in osteoporosis and osteonecrosis. The investigation of the structural characteristics of trabeculae and the mechanotransduction between bone cells plays a vital role in the treatment of bone-related diseases. In this study, a fluid-solid coupling model of the entire vertebral bone was established based on micro-CT images obtained from rat tail vertebrae subjected to tensile loading experiments. The flow characteristics of bone marrow and the mechanical response of osteocytes in different regions under physiological loading were investigated. The results revealed a U-shaped distribution of wall fluid shear stress (FSS) along the longitudinal axis in trabecular bone, with higher FSS regions exhibiting greater mechanical stimulation on osteocytes. These findings elucidate a positive correlation between the mechanical microenvironment among osteocytes, osteoblasts, and osteoclasts, providing potential strategies for the prevention and treatment of bone diseases.

2.
FASEB J ; 37(9): e23147, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37585277

RESUMEN

Long-term spaceflight can result in bone loss and osteoblast dysfunction. Frizzled-9 (Fzd9) is a Wnt receptor of the frizzled family that is vital for osteoblast differentiation and bone formation. In the present study, we elucidated whether Fzd9 plays a role in osteoblast dysfunction induced by simulated microgravity (SMG). After 1-7 days of SMG, osteogenic markers such as alkaline phosphatase (ALP), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2) were decreased, accompanied by a decrease in Fzd9 expression. Furthermore, Fzd9 expression decreased in the rat femur after 3 weeks of hindlimb unloading. In contrast, Fzd9 overexpression counteracted the decrease in ALP, OPN, and RUNX2 induced by SMG in osteoblasts. Moreover, SMG regulated phosphorylated glycogen synthase kinase-3ß (pGSK3ß) and ß-catenin expression or sublocalization. However, Fzd9 overexpression did not affect pGSK3ß and ß-catenin expression or sublocalization induced by SMG. In addition, Fzd9 overexpression regulated protein kinase B also known as Akt and extracellular signal-regulated kinase (ERK) phosphorylation and induced F-actin polymerization to form the actin cap, press the nuclei, and increase nuclear pore size, thereby promoting the nuclear translocation of Yes-associated protein (YAP). Our study findings provide mechanistic insights into the role of Fzd9 in triggering actin polymerization and activating YAP to rescue SMG-induced osteoblast dysfunction and suggest that Fzd9 is a potential target to restore osteoblast function in individuals with bone diseases and after spaceflight.


Asunto(s)
Actinas , Receptores Frizzled , Osteoblastos , Ingravidez , Proteínas Señalizadoras YAP , Animales , Ratas , Actinas/metabolismo , beta Catenina/metabolismo , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Polimerizacion , Ingravidez/efectos adversos , Receptores Frizzled/metabolismo , Proteínas Señalizadoras YAP/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902384

RESUMEN

Bone loss occurs in astronauts during long-term space flight, but the mechanisms are still unclear. We previously showed that advanced glycation end products (AGEs) were involved in microgravity-induced osteoporosis. Here, we investigated the improvement effects of blocking AGEs formation on microgravity-induced bone loss by using the AGEs formation inhibitor, irbesartan. To achieve this objective, we used a tail-suspended (TS) rat model to simulate microgravity and treated the TS rats with 50 mg/kg/day irbesartan, as well as the fluorochrome biomarkers injected into rats to label dynamic bone formation. To assess the accumulation of AGEs, pentosidine (PEN), non-enzymatic cross-links (NE-xLR), and fluorescent AGEs (fAGEs) were identified in the bone; 8-hydroxydeoxyguanosine (8-OHdG) was analyzed for the reactive oxygen species (ROS) level in the bone. Meanwhile, bone mechanical properties, bone microstructure, and dynamic bone histomorphometry were tested for bone quality assessment, and Osterix and TRAP were immunofluorescences stained for the activities of osteoblastic and osteoclastic cells. Results showed AGEs increased significantly and 8-OHdG expression in bone showed an upward trend in TS rat hindlimbs. The bone quality (bone microstructure and mechanical properties) and bone formation process (dynamic bone formation and osteoblastic cells activities) were inhibited after tail-suspension, and showed a correlation with AGEs, suggesting the elevated AGEs contributed to the disused bone loss. After being treated with irbesartan, the increased AGEs and 8-OHdG expression were significantly inhibited, suggesting irbesartan may reduce ROS to inhibit dicarbonyl compounds, thus suppressing AGEs production after tail-suspension. The inhibition of AGEs can partially alter the bone remodeling process and improve bone quality. Both AGEs accumulation and bone alterations almost occurred in trabecular bone but not in cortical bone, suggesting AGEs effects on bone remodeling under microgravity are dependent on the biological milieu.


Asunto(s)
Productos Finales de Glicación Avanzada , Osteoporosis , Ratas , Animales , Irbesartán , Productos Finales de Glicación Avanzada/metabolismo , Especies Reactivas de Oxígeno , Huesos/metabolismo
4.
Comput Methods Biomech Biomed Engin ; 26(3): 249-260, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35363098

RESUMEN

Osteocytes play an important role in mechanosensation and conduction in bone tissue, and the change of mechanical environment can affect the sensitivity of osteocytes to external stimulation. The structure of osteocytes will be changed when they are subjected to vibrations, which influence the mechanosensitivity of osteocytes and alter the regulation of bone remodeling process. As an important mechanotransduction structure in osteocytes, the membrane skeleton greatly affects the mechanosensation and conduction of osteocytes. However, the dynamic responses of membrane skeleton to the vibration and the structural changes of membrane skeleton are unclear. Therefore, we applied a nonlinear dynamics method to explain the time-dependent changes of membrane skeleton. The semi-ellipsoidal reticulate shell structure of membrane skeleton is built based on the experimental observation in our previous work. Then, the nonlinear dynamic equations of membrane skeleton are established according to the theory of plate and shell dynamics, and the displacement-time curves, phase portraits, and Poincaré maps of membrane skeleton structure were obtained. The numeration results show that under the vibration stimulation of 15 Hz, 30 Hz, 60 Hz, and 90 Hz, the membrane skeleton is destroyed after a transient equilibrium position vibration. The vibration of 15 Hz has the most destructive effect on the membrane skeleton, the natural frequency of membrane skeleton may be less than 15 Hz. In addition, the chaos phenomenon occurs to the membrane skeleton during vibration. As a damping factor, the existence of viscosity alleviates the damage of structure. This study can help us to understand the oscillation characteristic of membrane skeleton in osteocyte.


Asunto(s)
Mecanotransducción Celular , Osteocitos , Mecanotransducción Celular/fisiología , Osteocitos/fisiología , Dinámicas no Lineales , Huesos , Vibración
5.
FASEB J ; 36(2): e22114, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35076958

RESUMEN

Decades of spaceflight studies have provided abundant evidence that individual cells in vitro are capable of sensing space microgravity and responding with cellular changes both structurally and functionally. However, how microgravity is perceived, transmitted, and converted to biochemical signals by single cells remains unrevealed. Here in this review, over 40 cellular biology studies of real space fights were summarized. Studies on cells of the musculoskeletal system, cardiovascular system, and immune system were covered. Among all the reported cellular changes in response to space microgravity, cytoskeleton (CSK) reorganization emerges as a key indicator. Based on the evidence of CSK reorganization from space flight research, a possible mechanism from the standpoint of "cellular mechanical equilibrium" is proposed for the explanation of cellular response to space microgravity. Cytoskeletal equilibrium is broken by the gravitational change from ground to space and is followed by cellular morphological changes, cell mechanical properties changes, extracellular matrix reorganization, as well as signaling pathway activation/inactivation, all of which ultimately lead to the cell functional changes in space microgravity.


Asunto(s)
Citoesqueleto/fisiología , Humanos , Sistema Inmunológico/fisiología , Transducción de Señal/fisiología , Vuelo Espacial/métodos , Ingravidez
6.
Biochem Biophys Res Commun ; 568: 151-157, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217013

RESUMEN

Osteocytes are extremely sensitive to mechanical loading and govern bone remodeling process. Advanced glycation end products (AGEs) have the capacity to induce osteocyte apoptosis. In order to investigate the effects of AGEs on the mechanosensitivity of osteocytes, the osteocytic-like cells (MLO-Y4) were treated with low (50 µg/ml) and high (400 µg/ml) concentrations of AGEs for 1day and exposed to 15 dyne/cm2 of fluid shear stress. Then the F-actin cytoskeleton, prostaglandin E2(PGE2), Nitric oxide (NO), the Wnt/ß-catenin signaling pathway activity mRNA expressions were detected for osteocytes mechanical response changes; osteocalcin (OCN) and receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) were detected for the regulation on bone remodeling function of osteocytes. The results showed that AGEs accumulation inhibited the sense of osteocytes to external mechincal loading, promoted shear-induced NO and PGE2 release, suppressed the mechanosensitivity of Wnt/ß-catenin signaling pathway, and furthermore promoted OCN and RANKL/OPG mRNA expressions. These indicated AGEs had an adverse impact on the mechanosensitivity of osteocytes, and led to a negative effect on their regulation of bone remodeling process under mechanical stimulation. This work provides a new perspective to interpret the alteration mechanism of osteocytes mechanosensitivity and provides a novel clue for exploring the mechanism of osteoporosis.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Osteocitos/metabolismo , Animales , Fenómenos Biomecánicos , Línea Celular , Ratones , Osteocitos/citología , Estrés Mecánico
7.
Biomed Opt Express ; 12(4): 1922-1933, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33996207

RESUMEN

Osteocytes, as the mechano-sensors in bone, are always subjected to fluid shear stress (FSS) from the surrounding matrix. Quantification of FSS-induced cellular deformation is significant for clarifying the "perceive and transmit" process of cellular mechanotransduction. In this research, a label-free displacement and strain mapping method based on digital holographic microscopy (DHM) and digital image correlation (DIC) is introduced. The method, which is termed DHM-DIC, innovatively utilizes surface features extracted from holographic phase images instead of speckles as the metric for DIC searching. Simulation results on a hemisphere validate the feasibility of DHM-DIC. Displacement and strain maps of living osteocytes under 1.5 Pa FSS are evaluated from DHM-DIC and present good agreement with our previous finite element modeling results.

8.
Lab Chip ; 21(7): 1385-1394, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33585849

RESUMEN

We present sensing time-lapse morphogenesis of living bone cells under micro-fluidic shear stress (FSS) by digital holographic (DH) microscopy. To remove the effect of aberrations on quantitative measurements, we propose a numerical and automatic method to compensate for aberrations based on a convolutional neural network (CNN). For the first time, the aberration compensation issue is considered as a regression task where optimal coefficients for constructing the phase aberration map act as responses corresponding to the input aberrated phase image. We adopted tens of thousands of living cells' phase images reconstructed from digital holograms for training the CNN. The experiments demonstrate that, based on the trained network, phase aberrations can be totally removed in real-time without any hypothesis of object and aberration phase, knowledge of the setup's physical parameters, and the operation of selecting background regions; hence, the morphogenesis of the bone cells under FSS is accurately detected and quantitatively analyzed. The results show that the proposed method could provide a highly efficient and versatile way to investigate the effects of micro-FSS on living biological cells in microfluidic lab-on-chip platforms thanks to the combination of phase-contrast label-free microcopy with artificial intelligence.


Asunto(s)
Aprendizaje Profundo , Microscopía , Inteligencia Artificial , Microfluídica , Morfogénesis
9.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008503

RESUMEN

The molecular mechanisms of skeletal muscle atrophy under extended periods of either disuse or microgravity are not yet fully understood. The transition of Homer isoforms may play a key role during neuromuscular junction (NMJ) imbalance/plasticity in space. Here, we investigated the expression pattern of Homer short and long isoforms by gene array, qPCR, biochemistry, and laser confocal microscopy in skeletal muscles from male C57Bl/N6 mice (n = 5) housed for 30 days in space (Bion-flight = BF) compared to muscles from Bion biosatellite on the ground-housed animals (Bion ground = BG) and from standard cage housed animals (Flight control = FC). A comparison study was carried out with muscles of rats subjected to hindlimb unloading (HU). Gene array and qPCR results showed an increase in Homer1a transcripts, the short dominant negative isoform, in soleus (SOL) muscle after 30 days in microgravity, whereas it was only transiently increased after four days of HU. Conversely, Homer2 long-form was downregulated in SOL muscle in both models. Homer immunofluorescence intensity analysis at the NMJ of BF and HU animals showed comparable outcomes in SOL but not in the extensor digitorum longus (EDL) muscle. Reduced Homer crosslinking at the NMJ consequent to increased Homer1a and/or reduced Homer2 may contribute to muscle-type specific atrophy resulting from microgravity and HU disuse suggesting mutual mechanisms.


Asunto(s)
Proteínas de Andamiaje Homer/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Suspensión Trasera/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Neuromuscular/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Vuelo Espacial/métodos , Ingravidez
10.
Calcif Tissue Int ; 107(6): 625-635, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32940720

RESUMEN

Primary cilia are responsible for sensing mechanical loading in osteocytes. However, the underlying working mechanism of cilia remains elusive. An osteocyte model is necessary to reveal the role of cilia. Furthermore, the osteocyte model should be with upregulated or downregulated primary cilium expression. Herein, we used a pharmacological method to regulate the cilium formation of osteocytes. After screening, some pharmacological agents can regulate the cilium formation of osteocytes. We performed a CCK-8 assay to analyze the optimal working conditions of the drugs for MLO-Y4 cells. The agents include chloral hydrate (CH), Gd3+, Li+, and rapamycin. The expression of cilia affects the cellular functions, including mechanosensitivity, of osteocytes. Results showed that CH downregulated the cilium formation and ciliogenesis of osteocytes. In addition, Gd3+, Li+, and rapamycin upregulated the cilium expression of osteocytes. Moreover, the cilium expression positively correlated with the mechanosensitivity of osteocytes. This work reveals the role of primary cilia in the mechanosensing of osteocytes.


Asunto(s)
Hidrato de Cloral/farmacología , Cilios/efectos de los fármacos , Mecanotransducción Celular , Osteocitos/citología , Sirolimus/farmacología , Animales , Línea Celular , Ratones
11.
Biochem Biophys Res Commun ; 530(1): 167-172, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828281

RESUMEN

It is hard to explain the decrease in mechanosensitivity of osteocytes under microgravity. Primary cilia are essential mechanosensor for osteocytes. The cilia become shorter under the simulated microgravity (SMG) environment. The cilia change may be the reason for the mechanosensitivity decrease of osteocytes under SMG. To reveal the role of primary cilia in weightless-induced osteocyte dysfunction, we investigate intraflagellar transport (IFT) to understand the mechanism of the decreased cilia length of osteocytes when subjected to SMG. We measure the number of anterograde IFT particles with GFP::IFT88 and retrograde IFT particles with OFP::IFT43 that occur at a particular transverse plane of the cilia. We also measure the expression of IFT88 and IFT43 and the size of IFT particles under SMG. Herein, the ratio of anterograde/retrograde particle number and the ratio of protein expression of IFT88/IFT43 increase under SMG. The size of anterograde IFT particles with GFP::IFT88 gets a significant decrease under SMG. Fundamentally, SMG has broken the balanced operating state of IFT and makes the IFT particles smaller. The phenomenon under SMG is intriguing.


Asunto(s)
Cilios/metabolismo , Osteocitos/citología , Simulación de Ingravidez , Animales , Transporte Biológico , Línea Celular , Cilios/ultraestructura , Ratones , Osteocitos/metabolismo , Osteocitos/ultraestructura
12.
J Cachexia Sarcopenia Muscle ; 11(3): 768-782, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32031328

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely. To further improve the outcome, we explored the potential of a combinatorial therapy by modulating SMN production and muscle-enhancing approach as a novel therapeutic strategy for SMA. METHODS: The experiments were performed in a mouse model of severe SMA. A previously reported 25-mer morpholino antisense oligomer PMO25 was used to restore SMN expression. The adeno-associated virus-mediated expression of myostatin propeptide was used to block the myostatin pathway. Newborn SMA mice were treated with a single subcutaneous injection of 40 µg/g (therapeutic dose) or 10 µg/g (low-dose) PMO25 on its own or together with systemic delivery of a single dose of adeno-associated virus-mediated expression of myostatin propeptide. The multiple effects of myostatin inhibition on survival, skeletal muscle phenotype, motor function, neuromuscular junction maturation, and proprioceptive afferences were evaluated. RESULTS: We show that myostatin inhibition acts synergistically with SMN-restoring antisense therapy in SMA mice treated with the higher therapeutic dose PMO25 (40 µg/g), by increasing not only body weight (21% increase in male mice at Day 40), muscle mass (38% increase), and fibre size (35% increase in tibialis anterior muscle in 3 month female SMA mice), but also motor function and physical performance as measured in hanging wire test (two-fold increase in time score) and treadmill exercise test (two-fold increase in running distance). In SMA mice treated with low-dose PMO25 (10 µg/g), the early application of myostatin inhibition prolongs survival (40% increase), improves neuromuscular junction maturation (50% increase) and innervation (30% increase), and increases both the size of sensory neurons in dorsal root ganglia (60% increase) and the preservation of proprioceptive synapses in the spinal cord (30% increase). CONCLUSIONS: These data suggest that myostatin inhibition, in addition to the well-known effect on muscle mass, can also positively influence the sensory neural circuits that may enhance motor neurons function. While the availability of the antisense drug Spinraza for SMA and other SMN-enhancing therapies has provided unprecedented improvement in SMA patients, there are still unmet needs in these patients. Our study provides further rationale for considering myostatin inhibitors as a therapeutic intervention in SMA patients, in combination with SMN-restoring drugs.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Miostatina/antagonistas & inhibidores , Oligonucleótidos Antisentido/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/mortalidad , Oligonucleótidos Antisentido/farmacología , Análisis de Supervivencia , Resultado del Tratamiento
13.
Bone ; 128: 112056, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31376534

RESUMEN

Vibration at high frequency has been demonstrated to be anabolic for bone and embedded osteocytes. The response of osteocytes to vibration is frequency-dependent, but the mechanism remains unclear. Our previous computational study using an osteocyte finite element model has predicted a resonance effect involving in the frequency-dependent response of osteocytes to vibration. However, the cellular spontaneous vibratory motion of osteocytes has not been confirmed. In the present study, the cellular vibratory motions (CVM) of osteocytes were recorded by a custom-built digital holographic microscopy and quantitatively analyzed. The roles of ATP and spectrin network in the CVM of osteocytes were studied. Results showed the MLO-Y4 osteocytes displayed dynamic vibratory motions with an amplitude of ~80 nm, which is relied both on the ATP content and spectrin network. Spectrum analysis showed several frequency peaks in CVM of MLO-Y4 osteocytes at 30 Hz, 39 Hz, 83 Hz and 89 Hz. These peak frequencies are close to the commonly used effective frequencies in animal training and in-vitro cell experiments, and show a correlation with the computational predictions of the osteocyte finite element model. These results implicate that osteocytes are dynamic and the cellular dynamic motion is involved in the cellular mechanotransduction of vibration.


Asunto(s)
Adenosina Trifosfato/metabolismo , Osteocitos/citología , Osteocitos/metabolismo , Espectrina/metabolismo , Animales , Línea Celular , Ratones
14.
Biomed Opt Express ; 10(4): 1613-1626, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31086696

RESUMEN

Digital holographic microscopy (DHM) as a label-free quantitative imaging tool has been widely used to investigate the morphology of living cells dynamically. In the off-axis DHM, the spatial filtering in the frequency spectrum of the hologram is vital to the quality of the reconstructed images. In this paper, we propose an adaptive spatial filtering approach based on convolutional neural networks (CNN) to automatically extracts the optimal shape of frequency components. For achieving robust and precise recognition performance, the net model is trained by using the tens of thousands of frequency spectrums with a variety of specimens and imaging conditions. The experimental results demonstrate that the trained network produce an adaptive spatial filtering window which can accurately select the frequency components of the object term and eliminate the frequency components of the interference terms, especially the coherent noise that overlaps with the object term in the spatial frequency domain. We find that the proposed approach has a fast, robust, and outstanding frequency filtering capability without any manual intervention and initial input parameters compared to previous techniques. Furthermore, the applicability of the proposed method in off-axis DHM for dynamic analysis is demonstrated by real-time monitoring the morphologic changes of living MLO-Y4 cells that are constantly subject to Fluid Shear Stress (FSS).

15.
Front Physiol ; 9: 616, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875702

RESUMEN

The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

16.
Biomed Opt Express ; 9(1): 72-85, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29359088

RESUMEN

Cytoskeletons such as F-actin have different distributions in different cell parts and they are the cause of different degrees of cell collapse when the F-actin is disrupted. It is challenging to use conventional methods such as fluorescence microscopy and atomic force microscopy to conduct real-time and three-dimensional observations on the dynamic processes at different cell parts due to the slow measuring speed and the need for live-cell staining. In this study, the morphological variations of different bone cell parts caused by F-actin disruption are dynamically measured by using digital holographic microscopy (DHM). We separately analyze local parameters (cell height and cell width) and global parameters (cell projected area and cell volume) of cells to address variations of specific cell areas and quantify the changing process of the whole cell. We found significant differences in temporal variations of both local and global cell parameters between the cell body and cell process, which is consistent with the qualitative observation by fluorescence staining. Our study not only validates the unique ability of DHM to simultaneously investigate the dynamic process at different cell parts, but also provides sufficient experimental bases for exploring the mechanism for F-actin disruption.

17.
Sci Rep ; 7: 40940, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112189

RESUMEN

The spectrin is first identified as the main component of erythrocyte membrane skeleton. It is getting growing attention since being found in multiple nonerythroid cells, providing complex mechanical properties and signal interface under the cell membrane. Recent genomics studies have revealed that the spectrin is highly relevant to bone disorders. However, in osteocytes, the important mechanosensors in bone, the role of spectrin is poorly understood. In this research, the role of spectrin in the mechanotransduction of MLO-Y4 osteocytes was studied. Immunofluorescence staining showed that, the spectrins were elaborately organized as a porous network throughout the cytoplasm, and linked with F-actin into a dense layer underlying the cell membrane. AFM results indicate that, the spectrin is pivotal for maintaining the overall elasticity of osteocytes, especially for the cell cortex stiffiness. Disruption of the spectrin network caused obvious softening of osteocytes, and resulted in a significant increase of Ca2+ influx, NO secretion, cell-cell connections and also induced a translocation of eNOS from membrane to cytoplasm. These results indicate that the spectrin network is a global structural support for osteocytes involving in the mechanotransduction process, making it a potential therapeutic target for bone disorders.


Asunto(s)
Mecanotransducción Celular , Osteocitos/fisiología , Espectrina/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Citoplasma/química , Elasticidad , Ratones , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Unión Proteica
18.
Calcif Tissue Int ; 99(4): 373-83, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27240574

RESUMEN

Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.


Asunto(s)
Desarrollo Óseo , Productos Finales de Glicación Avanzada/metabolismo , Osteogénesis/fisiología , Envejecimiento , Animales , Biomarcadores/metabolismo , Matriz Ósea/fisiología , Resorción Ósea , Huesos/fisiología , Calcificación Fisiológica , Módulo de Elasticidad , Matriz Extracelular/metabolismo , Masculino , Osteoblastos/citología , Ratas , Ratas Sprague-Dawley , Estrés Mecánico , Soporte de Peso/fisiología
19.
Cell Biol Int ; 40(4): 397-406, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26715381

RESUMEN

Vibration, especially at low magnitude and high frequency (LMHF), was demonstrated to be anabolic for bone, but how the LMHF vibration signal is perceived by osteocytes is not fully studied. On the other hand, the mechanotransduction of osteocytes under shear stress has been scientists' primary focus for years. Due to the small strain caused by low-magnitude vibration, whether the previous explanation for shear stress will still work for LMHF vibration is unknown. In this study, a finite element method (FEM) model based on the real geometrical shape of an osteocyte was built to compare the mechanical behaviors of osteocytes under LMHF vibration and shear stress. The bio-response of osteocytes to vibration under different frequencies, including the secretion of soluble factors and the concentration of intracellular calcium, were studied. The regulating effect of the conditioned medium (CM) from vibrated osteocytes on osteoblasts was also studied. The FEM analysis result showed the cell membrane deformation under LMHF vibration was very small (with a peak value of 1.09%) as compared to the deformation caused by shear stress (with a peak value of 6.65%). The F-actin stress fibers of osteocytes were reorganized, especially on the nucleus periphery after LMHF vibration. The vibration at 30 Hz has a promoting effect on osteocytes and the osteogenesis of osteoblasts, whereas vibration at 90 Hz was suppressive. These results lead to a conclusion that the bio-response of osteocytes to LMHF vibration is frequency-dependent and is more related to the cytoskeleton on nuclear periphery rather than the membrane deformation.


Asunto(s)
Osteocitos/metabolismo , Vibración , Actinas/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citoesqueleto/efectos de los fármacos , Dinoprostona/metabolismo , Humanos , Mecanotransducción Celular , Microscopía Confocal , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Osteocitos/citología , Osteogénesis/efectos de los fármacos , Resistencia al Corte
20.
J Biomed Mater Res A ; 104(1): 322-39, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26179845

RESUMEN

As their name suggests, conductive nanomaterials (CNMs) are a type of functional materials, which not only have a high surface area to volume ratio, but also possess excellent conductivity. Thus far, CNMs have been widely used in biomedical applications, such as effectively transferring electrical signals, and providing a large surface area to adsorb proteins and induce cellular functions. Recent works propose further applications of CNMs in biosensors, tissue engineering, neural probes, and drug delivery. This review focuses on common types of CNMs and elaborates on their unique properties, which indicate that such CNMs have a potential to develop into a class of indispensable biomaterials for the diagnosis and therapy of human diseases.


Asunto(s)
Tecnología Biomédica/métodos , Conductividad Eléctrica , Nanoestructuras/química , Animales , Técnicas Biosensibles , Sistemas de Liberación de Medicamentos , Humanos , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...