Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.710
Filtrar
1.
Clin Lab ; 70(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747905

RESUMEN

BACKGROUND: Cold agglutinins (CAs) in blood samples can cause a reversible agglutination of red blood cell (RBC) which result in an incorrect complete blood count (CBC). So, it is important to explore new simple and feasible treatment conditions for clinical work. METHODS: The CAs group included 32 samples with CAs. The parameters of CBC at room temperature or after prewarming at 37°C or 41°C for different time periods were compared. The consistency and correlation of those parameters were analyzed. The morphology of erythrocytes in the CAs group was observed manually. The control group included 45 samples without CAs and prewarmed at 37°C or 41°C for different time periods. The differences were also analyzed. RESULTS: CAs have a significant effect on CBC. After prewarming at 37°C or 41°C the interferences are all corrected. Consider prewarming at 37°C for 120 minutes as the standard procedure. The consistency and correlation analysis showed there was no statistical difference between the results of each subgroup and standard group, except the MCHC of group 41°C 10 minutes. The correlation of parameters between all subgroups and the standard group is satisfied. Microscopic examination showed no RBC aggregation or fragmentation after prewarming at 41°C or 37°C. According to the maximum bias requirements for expert performance in Validation, Verification, and Quality Assurance of Automated Hematology Analyzers, 2nd Edition (CLSI H26-A2), the differences in overall results in control group are negligible. CONCLUSIONS: The 41°C 2 minutes prewarming method is a rapid and effective way for treating samples with CAs. It is an efficient way to obtain more reliable CBC results, without specific instruments.


Asunto(s)
Crioglobulinas , Eritrocitos , Humanos , Crioglobulinas/análisis , Recuento de Células Sanguíneas/métodos , Reproducibilidad de los Resultados , Temperatura , Factores de Tiempo , Agregación Eritrocitaria , Aglutinación
2.
Sci Rep ; 14(1): 10771, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730053

RESUMEN

For the first time, a control strategy based on Fuzzy Sliding Mode Control is implemented in the control of a large amplitude limit cycle of a composite cantilever beam in a multi-dimensional nonlinear form. In the dynamic model establishment of the investigated structure, the higher-order shearing effect is applied, as well as the second-order discretization. Numerical simulation demonstrates that a multi-dimensional nonlinear dynamic system of the investigated structure is demanded for accurate estimation of large amplitude limit cycle responses. Therefore, a control strategy is employed to effectively suppress such responses of the beam in multi-dimensional nonlinear form.

3.
Mar Pollut Bull ; 203: 116411, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733890

RESUMEN

This study delves into how two ecotypes of diatom affect the Pyropia haitanensis, a valuable and commercial red macroalga. We co-cultivated P. haitanensis with a planktonic diatom Skeletonema costatum and benthic diatom Navicula climacospheniae. The results showed that benthic diatom significantly hindered P. haitanensis growth, while planktonic ones had no major impact. The macroalga restrained planktonic diatom growth but did not affect benthic diatom. Photosynthetic pigments of macroalga, except chlorophyll, were higher, indicating stress when exposed to diatoms. Microscopic images revealed dense benthic diatom attachment, potentially stressing thalli due to limited light and EPS secretion. Total carbohydrate slightly decreased in both diatom treatments, while total protein significantly decreased with increasing benthic diatom densities. In summary, benthic diatom notably influenced P. haitanensis growth, pigments, and total protein levels. This study sheds light on the interaction between microalgal ecotypes and commercial macroalga P. haitanensis, which is crucial for its economic significance.

4.
Aesthetic Plast Surg ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740626

RESUMEN

BACKGROUND: Each year, tens of thousands of people worldwide choose to undergo cosmetic surgery in order to alter their appearance. In recent years, young people have gradually emerged to comprise the main driving force behind the increasing demand for cosmetic surgery. Previous studies have found that sexism may motivate young people to undergo such surgeries. However, few studies have been conducted to determine if this psychological mechanism influences the acceptance of cosmetic surgery among Chinese university students. METHODS: A total of 579 Chinese university students (280 girls and 299 boys, 17-20 years) volunteered to participate in the online survey. They completed a questionnaire containing the Ambivalent Sexism Inventory, the 12-item General Health Questionnaire, the Gender-Role Attitudes Questionnaire and the Acceptance of Cosmetic Surgery Scale. We firstly evaluated the underlying factor structure of the Acceptance of Cosmetic Surgery Scale using exploratory and confirmatory factor analyses, and exploring pattern of associations between the constructs was analyzed via path analysis. RESULTS: According to the findings, hostile sexism was associated with greater levels of acceptance toward cosmetic surgery. Moreover, gender-role attitudes mediated the link between hostile sexism and the acceptance of cosmetic surgery, and this mediation was positively influenced by general mental health. CONCLUSION: Our study contributes to a deeper understanding of Chinese university students' attitudes toward cosmetic surgery, hostile sexism may contribute to normalizing traditional gender stereotypes and encourage cosmetic surgery acceptability among Chinese university students. LEVEL OF EVIDENCE V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

5.
Artículo en Inglés | MEDLINE | ID: mdl-38763331

RESUMEN

OBJECTIVES: Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS: A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and 3 feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS: Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine fecal samples. All the four strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS: This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine feces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.

6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732130

RESUMEN

Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.


Asunto(s)
Ácido Abscísico , Microglía , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Humanos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Animales , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
7.
Adv Healthc Mater ; : e2400400, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769944

RESUMEN

Vascular dementia (VaD) is the second most common form of dementia worldwide. Oxidative stress and neuroinflammation are important factors contributing to cognitive dysfunction in patients with VaD. The antioxidant and anti-inflammatory properties of hydrogen are increasingly being utilizied in neurological disorders, but conventional hydrogen delivery has the disadvantage of inefficiency. Therefore, we used magnesium silicide nanosheets (MSNs) to release hydrogen in vivo in larger quantities and for longer periods of time to explore the appropriate dosage and regimen. In this study, we observed that hydrogen improved learning and working memory in VaD rats in the Morris water maze and Y-maze, which elicited improved cognitive function. Nissl staining of neurons showed that hydrogen treatment significantly improved edema in neuronal cells. The expression and activation of reactive oxygen species (ROS), Thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), caspase-1 and IL-1ß in the hippocampus were measured via ELISA, Western blotting, real-time qPCR, and immunofluorescence. The results showed that oxidative stress indicators and inflammasome-related factors were significantly decreased after 7dMSN treatment. Therefore, we concluded that hydrogen can ameliorate neurological damage and cognitive dysfunction in VaD rats by inhibiting ROS/NLRP3/IL-1ß-related oxidative stress and inflammation. This article is protected by copyright. All rights reserved.

8.
Adv Mater ; : e2401375, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747977

RESUMEN

Owing to the quantum size effect and high redox activity, quantum dots (QDs) play very essential roles toward electrochemical energy storage. However, it is very difficult to obtain different types and uniformly dispersed high-active QDs in a stable conductive microenvironment, because QDs prepared by traditional methods are mostly dissolved in solution or loaded on the surface of other semiconductors. Herein, dual-type semiconductor QDs (Co9S8 and CdS) are skillfully constructed within the interlayer of ultrathin-layered double hydroxides. In particular, the expandable interlayer provides a very suitable confined space for the growth and uniform dispersion of QDs, where Co9S8 originates from in situ transformation of cobalt atoms in laminate and CdS is generated from interlayer pre-embedding Cd2+. Meanwhile, XAFS and GGA+U calculations are employed to explore and prove the mechanism of QDs formation and energy storage characteristics as compared to surface loading QDs. Significantly, the hybrid supercapacitors achieve a high energy density of 329.2 µWh cm-2, capacitance retention of 99.1%, and coulomb efficiency of 96.9% after 22 000 cycles, which is superior to the reported QDs-based supercapacitors. These findings provide unique insights for designing and developing stable, ordered, and highly active QDs.

9.
Dev Comp Immunol ; 157: 105196, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762097

RESUMEN

The thymus-derived lymphocytes of jawed vertebrates have four T-cell receptor (TCR) chains that play a significant role in immunity. As chickens have commercial value, their immune systems require a great deal of attention. Local chicken breeds are an essential part of poultry genetic resources in China. Here, we used high-throughput sequencing to analyze the TCRα and TCRß repertoires and their relative expression levels in the native chicken breeds Baier Buff, Longyou Partridge, Xiaoshan, and Xianju. We found that TCR Vα and TCR Vß were expressed and included 17, 19, 17, and six segments of the Vα2, Vα3, Vß1, and Vß2 subgroups, respectively. V-J pairing was biased; Jα11 was utilized by nearly all Vα segments and was the most commonly used. Breed-specific V segments and V-J pairings were detected as well. The results of the principal coordinate analysis (PCoA) as well as the V-J pairing and CDR3 diversity analyses suggested that the four local chicken breeds did not significantly differ in terms of TCR diversity. Hence, they expressed not significant differentiation, and they are rich genetic resources for the development and utilization of immune-related poultry breeding.

10.
Chem Sci ; 15(19): 7285-7292, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756801

RESUMEN

Energy-efficient separation of C2H6/C2H4 is a great challenge, for which adsorptive separation is very promising. C2H6-selective adsorption has big implications, while the design of C2H6-sorbents with ideal adsorption capability, particularly with the C2H6/C2H4-selectivity exceeded 2.0, is still challenging. Instead of the current strategies such as chemical modification or pore space modulation, we propose a new methodology for the design of C2H6-sorbents. With a Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework dispersed onto a microporous carbon and a hierarchical-pore carbon, two composite sorbents are fabricated. The composite sorbents exhibit enhanced C2H6-selective adsorption capabilities with visible light, particularly the composite sorbent based on the hierarchical-pore carbon, whose C2H6 and C2H4 adsorption capacities (0 °C, 1 bar) are targetedly increased by 27% and only 1.8% with visible light, and therefore, an C2H6-selectivity (C2H6/C2H4 = 10/90, v/v) of 4.8 can be realized. With visible light, the adsorption force of the C2H6 molecule can be asymmetrically enhanced by the excitation enriched electron density over the adsorption sites formed via the close interaction between the Cu-TCPP and the carbon layer, whereas that of the C2H4 molecule is symmetrically altered and the forces cancelled each other out. This strategy may open up a new route for energy-efficient adsorptive separation of C2H6/C2H4 with light.

11.
J Hepatol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759889

RESUMEN

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme OXCT1. We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in hepatocellular carcinoma in vivo, we conducted multiplex immunohistochemistry (mIHC) experiments on human HCC specimens. To explore the role of OXCT1 in mouse hepatocellular carcinoma tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4 trimethylation (H3K4me3) level in the Arg1 promoter. In addition, Pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreasing CD8+ T-cell exhaustion and deceleration of tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in HCC patients. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping HCC progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for HCC. Here, we found that ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. And the strategic pharmacological intervention or genetic downregulation of OXCT1 in TAMs enhances the antitumor immunity and decelerated tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer.

12.
Nat Commun ; 15(1): 4222, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762507

RESUMEN

Dielectric elastomer actuators (DEAs) with large actuation strain and high energy density are highly desirable for actuating soft robots. However, DEAs usually require high driving electric fields (>100 MV m-1) to achieve high performances due to the low dielectric constant and high stiffness of dielectric elastomers (DEs). Here, we introduce polar fluorinated groups and nanodomains aggregated by long alkyl side chains into DE design, simultaneously endowing DE with a high dielectric constant and desirable modulus. Our DE exhibits a maximum area strain of 253% at a low driving electric field of 46 MV m-1. Notably, it achieves an ultrahigh specific energy of 225 J kg-1 at only|| ||40|| MV m-1, around 6 times higher than natural muscle and twice higher than the state-of-the-art DE. Using our DE, soft robots reach an ultrafast running speed of 20.6 BL s-1, 60 times higher than that of commercial VHB 4910, representing the fastest DEA-driven soft robots ever reported.

13.
Acta Pharmacol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589688

RESUMEN

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.

14.
Aging Dis ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38607734

RESUMEN

Osteoporosis is an age-related, systemic skeletal disease that poses a significant public health challenge in contemporary society. Development at the epigenetic level is emerging as an important pathogenic mechanism of osteoporosis. Despite indications of a robust association between DNA methylation and osteoporosis development, a comprehensive understanding of the specific role of DNA methylation in osteoporosis remains limited. In this study, significant bone loss was detected at the beginning of eight weeks of age in mouse models of premature aging (SHJHhr mice). We identified a notable upregulation of DNA methyltransferase 3b/3l (Dnmt3b/l) and downregulation of ten eleven translocation dioxygenase 1 (Tet1) in bone marrow mesenchymal stem cells (BMSCs) isolated from SHJHhr mice, along with an increase in the overall 5-methylcytosine (5mC) levels. Moreover, methylation capture sequencing revealed genomic hypermethylation in SHJHhr mice BMSCs. Integrated methylome and transcriptome analyses revealed several crucial methylated genes and networks that are potentially associated with osteoporosis development. Notably, elevated methylation levels of genes linked to the Wnt signaling pathway, particularly bone morphogenetic protein 2 (Bmp2) and fibroblast growth factor receptor (Fgfr2), appeared to compromise the osteogenic differentiation potential of BMSCs. Concurrently, DNA methyltransferase inhibitors attenuated the methylation of the promoter regions of Bmp2 and Fgfr2 and rescued the osteogenic differentiation potential of the BMSCs from SHJHhr mice. In summary, our study provides novel insights into the role of DNA methylation in the development of osteoporosis and suggests promising prospects for employing epigenetic interventions to manage osteoporosis.

15.
Opt Lett ; 49(8): 1997-2000, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621060

RESUMEN

This Letter proposes a novel, to the best of our knowledge, coded modulation scheme for randomly coupled multi-core fiber (RC-MCF) via multidimensional (MD) constellation with concatenated two-level multilevel coding (MLC). In the proposed system, the 16-dimensional (16D) Voronoi constellation (VC), naturally fitting with the 16 degrees of freedom of a four-core fiber (two quadratures, two polarizations, and four cores), is generated by a latticed-based shaping method to provide higher shaping gains. Moreover, combining it with the concatenated two-level MLC can further achieve better performance-complexity trade-off. It is demonstrated by simulation results of long-haul multi-channel RC-MCF transmission that the proposed coded modulation scheme for four-core fiber transmission offers 77% reduction in the number of decoding operations and up to 21% (585 km) reach increase over the conventional bit-interleaved coded modulation scheme for quadrature amplitude modulation.

16.
Nano Lett ; 24(15): 4336-4345, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567915

RESUMEN

This study demonstrates the conceptual design and fabrication of a vertically integrated monolithic (VIM) neuromorphic device. The device comprises an n-type SnO2 nanowire bottom channel connected by a shared gate to a p-type P3HT nanowire top channel. This architecture establishes two distinct neural pathways with different response behaviors. The device generates excitatory and inhibitory postsynaptic currents, mimicking the corelease mechanism of bilingual synapses. To enhance the signal processing efficiency, we employed a bipolar spike encoding strategy to convert fluctuating sensory signals to spike trains containing positive and negative pulses. Utilizing the neuromorphic platform for synaptic processing, physiological signals featuring bidirectional fluctuations, including electrocardiogram and breathing signals, can be classified with an accuracy of over 90%. The VIM device holds considerable promise as a solution for developing highly integrated neuromorphic hardware for healthcare and edge intelligence applications.


Asunto(s)
Nanocables , Sinapsis
17.
Nat Med ; 30(5): 1309-1319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627559

RESUMEN

Cancer of unknown primary (CUP) site poses diagnostic challenges due to its elusive nature. Many cases of CUP manifest as pleural and peritoneal serous effusions. Leveraging cytological images from 57,220 cases at four tertiary hospitals, we developed a deep-learning method for tumor origin differentiation using cytological histology (TORCH) that can identify malignancy and predict tumor origin in both hydrothorax and ascites. We examined its performance on three internal (n = 12,799) and two external (n = 14,538) testing sets. In both internal and external testing sets, TORCH achieved area under the receiver operating curve values ranging from 0.953 to 0.991 for cancer diagnosis and 0.953 to 0.979 for tumor origin localization. TORCH accurately predicted primary tumor origins, with a top-1 accuracy of 82.6% and top-3 accuracy of 98.9%. Compared with results derived from pathologists, TORCH showed better prediction efficacy (1.677 versus 1.265, P < 0.001), enhancing junior pathologists' diagnostic scores significantly (1.326 versus 1.101, P < 0.001). Patients with CUP whose initial treatment protocol was concordant with TORCH-predicted origins had better overall survival than those who were administrated discordant treatment (27 versus 17 months, P = 0.006). Our study underscores the potential of TORCH as a valuable ancillary tool in clinical practice, although further validation in randomized trials is warranted.


Asunto(s)
Aprendizaje Profundo , Neoplasias Primarias Desconocidas , Humanos , Neoplasias Primarias Desconocidas/patología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Curva ROC , Adulto , Citodiagnóstico/métodos , Anciano de 80 o más Años , Ascitis/patología , Citología
18.
Int Immunopharmacol ; 133: 112088, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626547

RESUMEN

The signaling lymphocytic activation molecule (SLAM) family participates in the modulation of various innate and adaptive immune responses. SLAM family (SLAMF) receptors include nine transmembrane glycoproteins, of which SLAMF3 (also known as CD229 or Ly9) has important roles in the modulation of immune responses, from the fundamental activation and suppression of immune cells to the regulation of intricate immune networks. SLAMF3 is mainly expressed in immune cells, such as T, B, and natural killer cells. It has a unique molecular structure, including four immunoglobulin-like domains in the extracellular domain and two immunoreceptor tyrosine-based signaling motifs in the intracellular structural domains. These unique structures have important implications for protein functioning. SLAMF3 is involved in pathogenesis of various disease, particularly autoimmune diseases and cancer. However, despite its potential clinical significance, a comprehensive overview of the current paradigm of SLAMF3 research is lacking. This review summarizes the structure, functional mechanisms, and therapeutic implications of SLAMF3. Our findings highlight the significance of SLAMF3 in both physiological and pathological contexts, and underline its dual role in autoimmunity and malignancies, and including disease progression and prognosis. The review also proposes that future studies on SLAMF3 should explore its context-specific inhibitory and stimulatory effects, expand on its potential in disease mapping, investigate related signaling pathways, and explore its value as a drug target. Research in these areas related to SLAMF3 can provide more precise directions for future therapeutic strategies.


Asunto(s)
Neoplasias , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Humanos , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Animales , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia
19.
Antibodies (Basel) ; 13(2)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651409

RESUMEN

Aflibercept is a therapeutic recombinant fusion protein comprising extracellular domains of human vascular endothelial growth factor receptors (VEGFRs) and IgG1-Fc. It is a highly glycosylated protein with five N-glycosylation sites that might impact it structurally and/or functionally. Aflibercept is produced in mammalian cells and exhibits large glycan heterogeneity, which hampers glycan-associated investigations. Here, we report the expression of aflibercept in a plant-based system with targeted N-glycosylation profiles. Nicotiana benthamiana-based glycoengineering resulted in the production of aflibercept variants carrying designed carbohydrates, namely, N-glycans with terminal GlcNAc and sialic acid residues, herein referred to as AFLIGnGn and AFLISia, respectively. Both variants were transiently expressed in unusually high amounts (2 g/kg fresh leaf material) in leaves and properly assembled to dimers. Mass spectrometric site-specific glycosylation analyses of purified aflibercept showed the presence of two to four glycoforms in a consistent manner. We also demonstrate incomplete occupancy of some glycosites. Both AFLIGnGn and AFLISia displayed similar binding potency to VEGF165, with a tendency of lower binding to variants with increased sialylation. Collectively, we show the expression of functionally active aflibercept in significant amounts with controlled glycosylation. The results provide the basis for further studies in order to generate optimized products in the best-case scenario.

20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 75-83, 2024 Jan 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38615169

RESUMEN

OBJECTIVES: With the in-depth study of complement dysregulation, glomerulonephritis with dominant C3 has received increasing attention, with a variety of pathologic types and large differences in symptoms and prognosis between pathologic types. This study analyzes the clinical, pathological, and prognostic characteristics of different pathological types of glomerulonephritis with dominant C3, aiming to avoid misdiagnosis and missed diagnoses. METHODS: The clinical, pathological, and follow-up data of 52 patients diagnosed as glomerulonephritis with dominant C3 by renal biopsy from June 2013 to October 2022 were retrospectively analyzed. According to the clinical feature and results of pathology, 15 patients with post-infectious glomerulonephritis (PIGN) and 37 patients with of non-infectious glomerulonephritis (N-PIGN) were classified. N-PIGN subgroup analysis was performed, and 16 patients were assigned into a C3-alone-deposition group and 21 in a C3-dominant-deposition group, or 27 in a C3 glomerulopathy (C3G) group and 10 in a non-C3 nephropathy (N-C3G) group. RESULTS: The PIGN group had lower creatinine values (84.60 µmol/L vs179.62 µmol/L, P=0.001), lower complement C3 values (0.36 g/L vs0.74 g/L, P<0.001) at biopsy, and less severe pathological chronic lesions compared with the N-PIGN group. In the N-PIGN subgroup analysis, the C3-dominant-deposition group had higher creatinine values (235.30 µmol/L vs106.70 µmol/L, P=0.004) and higher 24-hour urine protein values (4 025.62 mg vs1 981.11 mg, P=0.037) than the C3-alone-deposition group. The prognosis of kidney in the PIGN group (P=0.049), the C3-alone-deposition group (P=0.017), and the C3G group (P=0.018) was better than that in the N-PIGN group, the C3-dominant-deposition group, and the N-C3G group, respectively. CONCLUSIONS: Glomerulonephritis with dominant C3 covers a variety of pathological types, and PIGN needs to be excluded before diagnosing C3G because of considerable overlap with atypical PIGN and C3G; in addition, the deposition of C1q complement under fluorescence microscope may indicate poor renal prognosis, and relevant diagnosis, treatment, and follow-up should be strengthened.


Asunto(s)
Complemento C3 , Glomerulonefritis , Humanos , Creatinina , Estudios Retrospectivos , Glomerulonefritis/diagnóstico , Riñón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...