Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 610-619, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116559

RESUMEN

Photocatalytic nitrogen reduction is a promising green technology for ammonia synthesis under mild conditions. However, the poor charge transfer efficiency and weak N2 adsorption/activation capability severely hamper the ammonia production efficiency. In this work, heteropoly blue (r-PW12) nanoparticles are loaded on the surface of ultrathin bismuth oxychloride nanosheets with oxygen vacancies (BiOCl-OVs) by electrostatic self-assembly method, and a series of xr-PW12/BiOCl-OVs heterojunction composites have been prepared. Acting as a robust support, ultrathin two-dimensional (2D) structure of BiOCl-OVs inhibits the aggregation of r-PW12 nanoparticles, enhancing the interfacial contact between r-PW12 and BiOCl. More importantly, the existence of oxygen vacancies (OVs) provides abundant active sites for efficient N2 adsorption and activation. In combination of the enhanced light absorption and promoted photogenerated carriers separation of xr-PW12/BiOCl-OVs heterojunction, under simulated solar light, the optimal 7r-PW12/BiOCl-OVs exhibits an excellent photocatalytic N2 fixation rate of 33.53 µmol g-1h-1 in pure water, without the need of sacrificial agents and co-catalysts. The reaction dynamics is also monitored by in situ FT-IR spectroscopy, and an associative distal pathway is identified. Our study demonstrates that construction of heteropoly blues-based heterojunction is a promising strategy for developing high-performance N2 reduction photocatalysts. It is anticipated that combining of different defects with heteropoly blues of different structures might provide more possibilities for designing highly efficient photocatalysis systems.

2.
J Colloid Interface Sci ; 677(Pt A): 425-434, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096710

RESUMEN

In this study, a simple one-pot synthesis process is employed to introduce Pd dopant and abundant S vacancies into In2S3 nanosheets. The optimized Pd-doped In2S3 photocatalyst, with abundant S vacancies, demonstrates a significant enhancement in photocatalytic hydrogen evolution. The joint modification of Pd doping and rich S vacancies on the band structure of In2S3 result in an improvement in both the light absorption capacity and proton reduction ability. It is worth noting that photogenerated electrons enriched by S vacancies can rapidly migrate to adjacent Pd atoms through an efficient transfer path constructed by Pd-S bond, effectively suppressing the charge recombination. Consequently, the dual-defective In2S3 shows an efficient photocatalytic H2 production rate of 58.4 ± 2.0 µmol·h-1. Additionally, further work has been conducted on other ternary metal sulfide, ZnIn2S4. Our findings provide a new insight into the development of highly efficient photocatalysts through synergistic defect engineering.

3.
Aesthetic Plast Surg ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134680

RESUMEN

BACKGROUND: Mandibular genioplasty, a central procedure in oral and maxillofacial surgery, has traditionally relied on surgeon experience with potential limitations in precision. The advent of digital methods, particularly computer-aided design/computer-aided manufacturing (CAD/CAM), offers a promising alternative. This study aims to evaluate the efficacy of digital surgical guides in improving the precision of mandibular genioplasty. METHODS: A prospective analysis of 50 patients undergoing genioplasty was performed, 30 in the experimental group using digital surgical guides and 20 in the control group using traditional methods. Three-dimensional reconstructions were obtained using cone-beam computed tomography (CBCT) and digital scans. Osteotomy guides were 3D-printed based on group assignment. Postoperatively, accuracy was assessed by measuring distances between landmarks. RESULTS: The experimental group showed significantly reduced horizontal positioning errors in genioplasty advancement, with no significant differences in vertical errors. For genioplasty retraction, the experimental group showed fewer vertical positioning errors, while horizontal errors remained consistent. CONCLUSIONS: The use of digital surgical guides in mandibular genioplasty significantly improves surgical accuracy, resulting in improved outcomes and patient satisfaction. This study highlights the potential of digital methods in refining oral and maxillofacial surgical procedures. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

4.
Cell Biol Int ; 48(9): 1301-1312, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39021301

RESUMEN

Adriamycin (ADR) is widely used against breast cancer, but subsequent resistance always occurs. YAP, a downstream protein of angiomotin (AMOT), importantly contributes to ADR resistance, whereas the mechanism is largely unknown. MCF-7 cells and MDA-MB-231 cells were used to establish ADR-resistant cell. Then, mRNA and protein expressions of AMOT and YAP expressions were determined. After AMOT transfection alone or in combination with YAP, the sensitivity of the cells to ADR were evaluated in vitro by examining cell proliferation, apoptosis, and cell cycle, as well as in vivo by examining tumor growth. Additionally, the expressions of proteins in YAP pathway were determined in AMOT-overexpressing cells. In the ADR-resistant cells, the expression of AMOT was decreased while YAP was increased, respectively, and the nucleus localization of YAP was increased at the same time. After AMOT overexpression, these were inhibited, whereas the cell sensitivity to ADR was enhanced. However, the AMOT-induced changes were significantly suppressed by YAP knockdown. The consistent results in vivo showed that AMOT enhanced the inhibition of ADR on tumor growth, and inhibited YAP signaling, evidenced by decreased levels of YAP, CycD1, and p-ERK. Our data revealed that decreased AMOT contributed to ADR resistance in breast cancer cells, which was importantly negatively mediated YAP. These observations provide a potential therapy against breast cancer with ADR resistance.


Asunto(s)
Angiomotinas , Apoptosis , Neoplasias de la Mama , Proliferación Celular , Doxorrubicina , Resistencia a Antineoplásicos , Ratones Desnudos , Proteínas Señalizadoras YAP , Humanos , Doxorrubicina/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Células MCF-7 , Proteínas Señalizadoras YAP/metabolismo , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones Endogámicos BALB C , Antibióticos Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ciclo Celular/efectos de los fármacos
5.
Front Mol Biosci ; 11: 1339973, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845779

RESUMEN

Background: In recent years, the incidence of insulin resistance is increasing, and it can cause a variety of Metabolic syndrome. Ginsenosides have been clinically proven to improve fat metabolism and reduce insulin resistance, but their components and mechanism of action are still unclear. Objective: Ginsenoside, a bioactive compound derived from ginseng, exhibits significant potential in treating obesity, diabetes, and metabolic disorders. Despite evidence supporting its efficacy in ameliorating insulin resistance (IR) in obesity, the specific bioactive components and underlying mechanisms remain obscure. In this study, we endeavored to elucidate the potential molecular targets and pathways influenced by ginsenoside Rh3 (GRh3) to ameliorate IR in liver tissue. We employed a comprehensive approach that integrates system pharmacology and bioinformatics analysis. Materials and methods: Our methodology involved the identification of candidate targets for GRh3 and the profiling of differentially expressed genes (DEGs) related to IR in individuals with insulin resistance. The coalescence of candidate targets and DEGs facilitated the construction of a "GRh3-targets-disease" network for each tissue type, ultimately yielding 38 shared target genes. Subsequently, we conducted pathway enrichment analysis, established protein-protein interaction (PPI) networks, and identified hub targets among the GRh3 targets and IR-related DEGs. Additionally, we conducted animal experiments to corroborate the role of these hub targets in the context of GRh3. Results: Our investigation identified a total of 38 overlapping targets as potential candidates. Notably, our analysis revealed crucial hub targets such as EGFR, SRC, ESR1, MAPK1, and CASP3, alongside implicated signaling pathways, including those related to insulin resistance, the FoxO signaling pathway, the PPAR signaling pathway, and the IL-17 signaling pathway. This study establishes a robust foundation for the mechanisms underlying GRh3's efficacy in mitigating IR. Furthermore, these results suggest that GRh3 may serve as a representative compound within the ginsenoside family. Conclusion: This study elucidates the potential molecular targets and associated pathways through which GRh3 ameliorates IR, showcasing its multifaceted nature, spanning multiple targets, pathways, and mechanisms. These findings establish a robust foundation for subsequent experimental inquiries and clinical applications.

6.
Int J Endocrinol ; 2024: 5341646, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515506

RESUMEN

Background: Serum uric acid (SUA) and glycosylated hemoglobin (HbA1c) were closely related to the body's metabolism. This study aimed to investigate the relationship between HbA1c and SUA in adults. Methods: This study selected 7293 participants aged ≥20 from 2011 to 2020 in the National Health and Nutrition Examination Survey (NHANES). The multivariate linear regression model was used to test the association between HbA1c and SUA. Subgroup analysis was performed according to age, gender, race, and body mass index (BMI). This study solved the relationship between HbA1c and SUA by fitting a smooth curve. Finally, the inflection point in the nonlinear relationship was calculated by the recursive algorithm, and the relationship between HbA1c and SUA on both sides of the inflection point was analyzed by the two-segment piecewise linear regression model. Results: All 7293 participants found a negative correlation between HbA1c and SUA by completely adjusting the model (ß = -7.93 and 95% CI: -9.49--6.37). In addition, when this study was stratified by gender, age, race, and BMI status, this negative correlation was still statistically significant. In the subgroup analysis, we found that the relationship between the two had different results due to gender differences. In men, HbA1c had a significant negative correlation with SUA. However, in women, the HbA1c value was positively correlated with SUA before 6.8%, and the HbA1c value was negatively correlated with SUA after 6.8%, which indicates that the relationship between HbA1c and SUA in women has changed in prediabetes and diabetes. Conclusion: This study shows that HbA1c is positively correlated with SUA in American adults before 7%. There is a negative correlation after the HbA1c value of 7%.

7.
Nutr Metab Cardiovasc Dis ; 34(5): 1295-1304, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508994

RESUMEN

BACKGROUND AND AIM: Diabetes retinopathy (DR) is a common microvascular complication of diabetes, and it is the main cause of global vision loss. The current observational research results show that the causal relationship between Vitamin D and DR is still controversial. Therefore, we conducted a Mendelian randomization study to determine the potential causal relationship between serum 25-hydroxyvitamin D 25(OH)D and DR. METHODS AND RESULTS: In this study, we selected aggregated data on serum 25(OH)D levels (GWAS ID: ebi-a-GCST90000615) and DR (GWAS ID: finn-b-DM_RETINOPATHY) from a large-scale GWAS database. Then use MR analysis to evaluate the possible causal relationship between them. We mainly use inverse variance weighted (IVW), supplemented by MR Egger and weighted median methods. Sensitivity analysis is also used to ensure the stability of the results, such as Cochran's Q-test, MR-PRESSO, MR-Egger interception test, and retention method. The MR analysis results showed that there was no significant causal relationship between 25(OH)D and DR (OR = 1.0128, 95%CI=(0.9593,1.0693), P = 0.6447); Similarly, there was no significant causal relationship between DR and serum 25 (OH) D levels (OR = 0.9900, 95% CI=(0.9758,1.0045), P = 0.1771). CONCLUSION: Our study found no significant causal relationship between serum 25(OH)D levels and DR, and vice versa. A larger sample size randomized controlled trial is needed to further reveal its potential causal relationship.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Enfermedades de la Retina , Humanos , Análisis de la Aleatorización Mendeliana , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/epidemiología , Retinopatía Diabética/genética , Vitamina D , Bases de Datos Factuales , Estudio de Asociación del Genoma Completo
8.
Curr Issues Mol Biol ; 46(1): 650-662, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38248344

RESUMEN

Isocorydine (ICD) exhibits strong antitumor effects on numerous human cell lines. However, the anticancer activity of ICD against oral squamous cell carcinoma (OSCC) has not been reported. The anticancer activity, migration and invasion ability, and changes in the cytoskeleton morphology and mechanical properties of ICD in OSCC were determined. Changes in the contents of reactive oxygen species (ROS), the mitochondrial membrane potential (MMP), ATP, and mitochondrial respiratory chain complex enzymes Ⅰ-Ⅳ in cancer cells were studied. ICD significantly inhibited the proliferation of oral tongue squamous cells (Cal-27), with an IC50 of 0.61 mM after 24 h of treatment. The invasion, migration, and adhesion of cancer cells were decreased, and cytoskeletal actin was deformed and depolymerized. In comparison to an untreated group, the activities of mitochondrial respiratory chain complex enzymes I-IV were significantly decreased by 50.72%, 27.39%, 77.27%, and 73.89%, respectively. The ROS production increased, the MMP decreased by 43.65%, and the ATP content decreased to 17.1 ± 0.001 (mmol/mL); ultimately, the apoptosis rate of cancer cells increased up to 10.57% after 24 h of action. These findings suggest that ICD exerted an obvious anticancer activity against OSCC and may inhibit Cal-27 proliferation and growth by causing mitochondrial dysfunction and interrupting cellular energy.

9.
J Phys Chem Lett ; 15(2): 514-524, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38193895

RESUMEN

Benzo[1,2-b:4,5-b']dithiophene (BDT) and its derivatives have made important contributions to constructing high-performance polymers. However, it is difficult to clarify the real role of donor units due to the interference of strong electronegativity and crystallinity of acceptor units in the D-A copolymer. Here, we design a cyclohexane-substituted dithieno[3,2-f:2',3'-h]quinoxaline (DTQ)-based acceptor unit with successfully destroyed crystallinity and charge transport. Three donor-dominated materials PQH-BTF, PQH-BTCl, and PQH-BFCl are obtained. It is found that the materials exhibit obvious differences after destroying the crystallization and charge transport of the acceptor unit, and the real role of different two-dimensional donor units in designed polymers is confirmed. The backbone BDF exhibits much stronger intermolecular interactions compared to BDT, while the side chain ThF demonstrates a higher crystallization capacity than that of ThCl. More interestingly, it can be inferred that the molecular backbone is likely to construct miscible-phase crystallization (D-A crystal) while the side chain tends to demonstrate a capacity for pure-phase crystallization (D-D crystal) in a 2D donor system. Different crystallization leads to different exciton transport: pure-phase crystallization is conducive to the reduction of trap-assisted recombination, while miscible crystallization is beneficial to the reduction of bimolecular recombination. This work can help to choose donor units more accurately when preparing D-A copolymers.

10.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049313

RESUMEN

Tunicate nanocellulose with its unique properties, such as excellent mechanical strength, high crystallinity, and good biodegradability, has potential to be used for the preparation of light management film with tunable transmittance and haze. Herein, we prepared a whole tunicate cellulose film with tunable haze levels, by mixing tunicate microfibrillated cellulose (MFC) and tunicate cellulose nanofibrils (CNF). Then, the obtained whole tunicate cellulose film with updated light management was used to modify the organic solar cell (OSC) substrate, aiming to improve the light utilization efficiency of OSC. Results showed that the dosage of MFC based on the weight of CNF was an important factor to adjust the haze and light transmittance of the prepared cellulose film. When the dosage of MFC was 3 wt.%, the haze of the obtained film increased 74.2% compared to the pure CNF film (39.2%). Moreover, the optimized tunicate cellulose film exhibited excellent mechanical properties (e.g., tensile strength of 168 MPa, toughness of 5.7 MJ/m3) and high thermal stability, which will be beneficial to the workability and durability of OSC. More interestingly, we applied the obtained whole tunicate cellulose film with a high haze (68.3%) and high light transmittance (85.0%) as an additional layer to be adhered to the glass substrate of OSC, and a notable improvement (6.5%) of the power conversion efficiency was achieved. With the use of biodegradable tunicate cellulose, this work provides a simple strategy to enhance light management of the transparent substrate of OSC for improving power conversion efficiency.

11.
J Colloid Interface Sci ; 641: 619-630, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36963255

RESUMEN

Heterojunctions based on conjugated polymers (PHJs) are of promise as photocatalysts. Here, we fabricate the two-dimensional benzodithiophene (BDT) and thieno[2,3-f]benzofuran (TBF) based conjugated polymers/g-C3N4 PHJs creatively using the symmetry-breaking strategy. PD1 and PD3 with the asymmetric backbone TBF have better crystallinity. Moreover, PD3 utilizing fluorinated benzotriazole as the electron acceptor unit possesses more compact π - π stacking and higher charge mobility. The conjugated polymer PD5 with asymmetric side chains in the donor unit BDT guarantees more efficient charge transfer in the corresponding PD5/g-C3N4 PHJ while maintaining comparable light utilization rate. Consequently, PD5/g-C3N4 shows the champion performance with photocatalytic sterilization rates reaching 99.1% and 97.3% for S. aureus and E. coli. Notably, the reaction rate constant for Rhodamine B degradation of PD5/g-C3N4 is 8 times that of g-C3N4, a record high among conjugated polymers/g-C3N4. This study aims to reveal the structure - property correlation of asymmetric conjugated polymers/g-C3N4 for potential photocatalysis applications.

12.
Small ; 19(6): e2205244, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36436884

RESUMEN

Liquid-crystal small molecule donor (LC-SMD) is a new type organic semiconductor, which is attractive not only for the easy synthesis and purification, well-defined chemical structures, etc., but also for the LC state that makes the crystallinity and aggregation state of molecules adjustable. Here, one new LC-SMD (a-BTR-H4) is synthesized with 1D alkoxyl and 2D thiophene-alkylthiol side-chained benzo[1,2-b:4,5-b']dithiophene core, trithiophene π-bridge, and 3-(2-ethylhexyl) rhodanine end group. a-BTR-H4 shows low LC transition temperature, 117 °C, however, counterpart material (a-BTR-H5) with the same main structure but 3-ethyl rhodanine terminal group does not show LC properties. Although a-BTR-H4/H5 show similar Ultraviolet-visible absorption spectrum and energy levels, a-BTR-H4 affords relatively high photovoltaic performances due to favorable blend morphology produced by the consistent annealing temperature of Y6-based accepters and liquid crystal temperature of donors. Preliminary results indicate that a-BTR-H4 gains a power conversion efficiency (PCE) of 11.36% for Y6-based devices, which is ascribed to better light harvest as well as balanced carrier generation and transport, while a-BTR-H5 obtains 7.57% PCE. Therefore, some materials with unique nematic LC phase have great application potential in organic electronics, and further work to utilize a-BTR-H4 for high-performance device is underway.

13.
Biomed Res Int ; 2022: 7978258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452059

RESUMEN

Objective: This study systematically explored the mechanism of Rhizoma Coptidis-Eupatorium fortunei in treating type 2 diabetes mellitus (T2DM) by using network pharmacology and molecular docking methods. Methods: The TCMSP database was used to screen out the active ingredients and related targets of Rhizoma Coptidis-Eupatorium fortunei (R-E) drug pair. GeneCards, OMIM, DrugBank, and other databases were used to screen the related targets of T2DM, and then, the UniProt database was used to standardize the relevant targets of T2DM. Then, the Venn analysis was performed on the active ingredient-related targets and disease-related targets of R-E drugs to find the intersection targets. Using the STRING database and Cytoscape software, the PPI network and "drug-active ingredient-target-disease" network are constructed by intersecting targets and corresponding active ingredients. Through the cluster profiler package in the R software, GO function enrichment analysis and KEGG pathway enrichment analysis were carried out on the intersection targets and the screened core targets, and the prediction results were verified by molecular docking. Results: Taking OB ≥ 30% and DL ≥ 0.18 as the standard, a total of 25 effective active ingredients of R-E drug pairs were screened, including berberine, palmatine, coptisine, and so on. After corresponding, 19 effective chemical components and 284 targets of the R-E drug pair were obtained. After searching multiple disease databases, 1289 T2DM-related targets were screened. After the summary, 159 common targets were obtained in this study. Finally, in the bioinformatics analysis, this study concluded that quercetin, luteolin, berberine, palmatine, and coptisine are the main chemical components of the R-E drug pair. ESR1, MAPK1, AKT1, TP53, IL6, and JUN are the important core targets. GO and KEGG enrichment analyses showed that Rhizoma Coptidis-Eupatorium fortunei could improve T2DM by regulating multiple biological processes and pathways. Molecular docking results showed that berberine, palmatine, and coptisine had higher binding to the core target, and MAPK1, AKT1, and IL6 could stably bind to the active ingredients of Rhizoma Coptidis-Eupatorium fortunei. Conclusion: Rhizoma Coptidis-Eupatorium fortunei may have therapeutic effects on T2DM such as anti-inflammatory and regulating glucose and lipid metabolism through multiple components, multiple targets, and multiple signaling pathways, which provides a scientific basis for further research on the hypoglycemic effect of Rhizoma Coptidis-Eupatorium fortunei drug pair.


Asunto(s)
Antineoplásicos , Berberina , Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Eupatorium , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Farmacología en Red , Interleucina-6
14.
Artículo en Inglés | MEDLINE | ID: mdl-36554371

RESUMEN

The domino event caused by fire is one of the common accidents in hydrocarbon storage tank farms, which further expands the severity and scope of the accident. Due to the different failure sequence of the storage tanks in a domino accident, the radiant heat generated by the failed storage tank to the target tank is different. Based on the influence of this synergistic effect, this study combined the Monte Carlo algorithm and FSEM, and proposed a fast real-time probability calculation method for a fire domino accident in a storage tank area, for the first time. This method uses the Monte Carlo algorithm to simulate all accident scenarios, and obtains the evolution of multiple escalation fire domino accidents under the synergistic effect according to FSEM, and then calculates the real-time failure probability and risk. Based on a comprehensive analysis of the accident propagation path, this method avoids the problem of a large amount of calculation, and is conducive to the rapid and effective analysis of the fire risk in a storage tank area and the formulation of corresponding risk reduction measures. The effectiveness and superiority of the proposed method were proved by a case study.

15.
Contrast Media Mol Imaging ; 2022: 1118745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159169

RESUMEN

In order to study the rehabilitation of dysphagia after stroke, this paper uses tomographic imaging technology and repeated transcranial magnetic stimulation rTMS therapy to verify the effect of this treatment method on the rehabilitation of dysphagia after stroke. In this study, the method of systematic review and meta-analysis are used to comprehensively collect the current published literature on the application of repeated transcranial magnetic stimulation in post-stroke dysphagia, and to quantitatively synthesize and qualitatively analyze the data and opinions. This article aims to explore the therapeutic effect and mechanism of repeated transcranial magnetic stimulation in the treatment of dysphagia after stroke, and to evaluate its effectiveness, so as to better guide the application of repetitive transcranial magnetic stimulation in the rehabilitation of dysphagia after stroke. The evaluation methods of rTMS for the clinical efficacy of PAS, FDS, VDS, DOSS, DD, and BI in patients with dysphagia after stroke are consistent. The influencing factors of rTMS on the swallowing function impairment of stroke include the choice of stimulation frequency, stimulation site, and stimulation time. Low-frequency stimulation of the contralateral hemisphere and high-frequency stimulation of the affected brain can reduce the excitability of the contralateral brain and enhance the excitability of the affected brain. The stimulation site is mainly in the pharyngeal cortex. Experiments show that rTMS can improve swallowing dysfunction after stroke within 2 weeks, and rTMS has no obvious side effects on swallowing dysfunction in patients with cerebral infarction.


Asunto(s)
Trastornos de Deglución , Accidente Cerebrovascular , Deglución/fisiología , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Humanos , Accidente Cerebrovascular/complicaciones , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento
16.
J Colloid Interface Sci ; 627: 880-890, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35901567

RESUMEN

A series of molecules with imide units bridged by the core of thiophene-based groups, namely N-dimethylaminopropyl-4-thiophene-1,8- naphthalimide (NT), bis(N-dimethylaminopropyl)-4-thiophene-1,8-naphthalimide (NTN), and bis(N-dimethylaminopropyl)-4-bithiophene-1,8-naphthalimide (N2TN), have been reported as cathode interfacial materials (CIMs) to realize low interfacial tension with the blend in organic solar cells (OSCs). We evaluated the Ohmic contact between the active layer and these cathode interlayers basedon various characterizations, which is of great significance for further understanding these imide-based interlayers. It turned out that the homogeneous and continuous NTN interlayer as a CIM balanced the factors of crystallization and film-forming property, and broke through the limitation of poor conductivity and high aggregation in our previous work. Moreover, compared with NT and N2TN, the NTN interlayer achieve a combination of good solubility in methanol, efficient electron mobility, and aligned work function. These advantages of NTN are conducive to the realization of high-efficient interfacial electron collection and transfer, thus improving the short-circuit current density (JSC) and filling factor (FF) of devices. Therefore, the binary OSCs (PM6:Y6) based on NTN engineered aluminium-cathode with excellent stability demonstrate a maximum power conversion efficiency (PCE) of 16.56 %, which is higher than NT (PCE = 1.34 %) and N2TN (PCE = 13.90 %). The enhanced performance is ascribed to the improvement of JSC and FF, which is originated from the outstanding conductivity and high-quality interface of NTN. Surprisingly, the PM6:Y6-based semitransparent device with NTN obtain a PCE of 13.43 % with an average visible transmittance of 17.79 %, which is better than traditional PDINO. This study highlights a potential strategy for enhancing the performance of OSCs by the interface engineering via decreasing the interfacial intension.

17.
J Ethnopharmacol ; 282: 114672, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34560213

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Presently, insulin resistance has been a growing concern that urgently needs to be addressed, because it not only places patients at risk of developing type 2 diabetes mellitus but also results in metabolic syndrome and different aspects of cardiovascular diseases. Shenqi Jiangtang Granule (SJG) is a classic traditional Chinese medicine (TCM) prescription that is widely used to treat diabetes mellitus and its complications in clinical practice. While studies have revealed that SJG with multi-ingredients and multi-targets characteristics possesses potential anti-insulin resistance pharmacological properties, its mechanisms of action and molecular targets for the treatment of insulin resistance are still obscure, which prompt us to conduct an in-depth research. AIM OF THE STUDY: This study was purposed to uncover the pharmacological mechanism of SJG against insulin resistance through integrating network pharmacology and experimental validation. MATERIALS AND METHODS: The putative ingredients of SJG and its related targets were discerned from the TCMSP database. Subsequently, insulin resistance-associated targets were retrieved from GeneCard, OMIM, and GEO database. Compound-target, protein-protein interaction (PPI), and compound-target-pathway networks were established using Cytoscape software. GO and KEGG pathway analyses were performed to identify possible enrichment of genes with specific biological themes. Molecular docking was used to verify the correlation between the main active ingredients and hub targets. Optimal docking conformation was further analyzed by molecular dynamics (MD) simulation. Finally, the potential molecular mechanisms of SJG acting on insulin resistance, as predicted by the network pharmacology analyses, were validated experimentally in insulin-resistant rat model. RESULTS: 136 active compounds, 211 corresponding targets in addition to 1463 disease-related targets were collected, of which 94 intersection targets were obtained. 29 key targets including AKT1, VEGFA, IL-6, CASP3, and PTGS2 were identified through PPI network analysis. Hub module of PPI network was closely associated with inflammation. GO and KEGG analyses also revealed that inflammation-related pathways may be a central factor for SJG to modulate insulin resistance. Molecular docking test showed a good binding potency between primary active ingredients and core targets, and the binding mode of optimal docking conformation was stable in MD simulation. A rat model of insulin resistance was successfully induced by chronic high-fat diet (HFD) consumption. Through a series of in vivo studies, including HEC, ITT, and HOMA-IR measurement, it was revealed that SJG exhibited a beneficial effect on ameliorating insulin resistance, as demonstrated by a significant increase of GIR and a significant decrease of AUCITT and HOMA-IR index value. Further molecular biological analysis showed that SJG can decrease the mRNA expression level and serum concentration of inflammatory cytokines (TNF-α, IL-6, and IL-1ß), along with suppressing the p-NFκB protein overexpression, indicating its anti-inflammatory activity. Also, it can contribute to the reversal of the impaired hepatic insulin signaling pathway, as evidenced by up-regulated protein expression of p-Akt and GLUT2. CONCLUSIONS: Through in silico and in vivo approaches, the present study not only provides a unique insight into the possible mechanism of SJG in insulin resistance after successfully filtering out associated key target genes and signaling pathways, but also suggests a novel promising therapeutic strategy for curing insulin resistance.


Asunto(s)
Simulación por Computador , Medicamentos Herbarios Chinos , Resistencia a la Insulina , Animales , Ratas , Glucemia/efectos de los fármacos , Peso Corporal , Medicamentos Herbarios Chinos/farmacología , Técnica de Clampeo de la Glucosa , Insulina/sangre , Modelos Moleculares , Simulación del Acoplamiento Molecular , Farmacología en Red , Conformación Proteica , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Neuro Endocrinol Lett ; 43(7-8): 378-384, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720126

RESUMEN

OBJECTIVES: Congenital adrenal hyperplasia (CAH) is a rare disorder that can cause masculinization of the external genitalia in females, usually evident in neonates. To present a case series of female patients with CAH by summarizing their clinical features and outcomes. DESIGN: This retrospective study analyzed the clinical data of female patients with CAH admitted to the First Affiliated Hospital of Xiamen University from 1995 to 2019. MATERIALS AND METHODS: Clinical characteristics, CAH subtype, treatments, and outcomes were summarized from the medical records and analyzed. Follow-up was conducted after drug therapy and surgical treatment and was censored in 2019. RESULTS: Twenty-one female patients were diagnosed with CAH: 21-hydroxylase deficiency (21-OHD) in 17 patients and 17α-hydroxylase deficiency (17α-OHD) in four patients. The clinical manifestations of 21-OHD were clitoral hypertrophy, pigmentation, male secondary sexual development, genital malformation, sexual precocity, nausea, and vomiting. The clinical manifestations of 17α-OHD were hypertension, feminization, sexual infantilism, and pigmentation. The patients received hormone replacement therapy. When necessary, some patients underwent external genital organ orthomorphia or artificial periodic therapy. Twelve patients were followed up; their sexual development was improved, but seven patients had poor breast development due to late diagnosis and/or poor hormone treatment adherence. CONCLUSION: Female CAH patients are subject to genital deformities, virilizing signs, breast dysplasia, and other appearance defects. The purpose of this report is to improve plastic and esthetic surgeons' understanding of CAH.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Recién Nacido , Humanos , Masculino , Femenino , Hiperplasia Suprarrenal Congénita/diagnóstico , Estudios Retrospectivos , Diagnóstico Tardío
19.
J Colloid Interface Sci ; 608(Pt 1): 103-113, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626959

RESUMEN

In recent years, photocatalytic technology has attracted wide attention in environmental treatment, exploring non-toxic and metal-free photocatalysts is imminent to meet sustainable development. However, semiconductors with wide spectral response are rarely studied and applied in the field of photocatalysis. Herein, a new narrow band-gap polymer PFBDT-DPP (P3) with wide absorption from 500 to 860 nm was synthesized and further constructed heterostructure with g-C3N4 for photocatalytic sterilization and degradation of organic pollutant Rhodamine B (RhB). The optimal antibacterial rate for Escherichia coli reached 99.8% after 190 min of light irradiation and for Staphylococcus aureus reached 96.8% after 120 min of irradiation, and the highest degradation efficiency of RhB by P3/g-C3N4 was 98.9% within 60 min light irradiation, while g-C3N4 displayed an unsatisfactory sterilization and photodegradation performance. This is mainly attributed to the broadened light absorption range and enhanced carrier separation efficiency of P3/g-C3N4. This work could provide a new strategy to fabricate metal-free photocatalysts with high utilization of sunlight and excellent photocatalytic performance.


Asunto(s)
Polímeros , Esterilización , Catálisis , Cetonas , Pirroles , Tiadiazoles
20.
Trials ; 22(1): 719, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34666815

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain, diarrhea or constipation, and changes in defecation patterns. No organic disease is found to explain these symptoms by routine clinical examination. This study aims to investigate the efficacy and safety of acupuncture therapy for IBS patients compared with those of conventional treatments. We also aim to identify the optimal acupoint combination recommended for IBS and to clarify the clinical advantage of the "multiacupoint co-effect and synergistic effect." METHODS AND ANALYSIS: A total of 204 eligible patients who meet the Rome IV criteria for IBS will be randomly stratified into acupuncture group A, acupuncture group B, or the control group in a 1:1:1 ratio with a central web-based randomization system. The prespecified acupoints used in the control group will include bilateral Tianshu (ST25), Shangjuxu (ST37), Neiguan (PC6), and Zusanli (ST36). The prespecified acupoints used in experimental group A will include bilateral Tianshu (ST25), Shangjuxu (ST37), and Neiguan (PC6). The prespecified acupoints used in experimental group B will include bilateral Tianshu (ST25), Shangjuxu (ST37), and Zusanli (ST36). Each patient will receive 12 acupuncture treatments over 4 weeks and will be followed up for 4 weeks. The primary outcome is the IBS-Symptom Severity Scale (IBS-SSS) score. The secondary outcomes include the Bristol Stool Form Scale (BSFS), Work and Social Adjustment Score (WSAS), IBS-Quality of Life (IBS-QOL), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS) scores. Both the primary outcome and the secondary outcome measures will be collected at baseline, at 2 and 4 weeks during the intervention, and at 6 weeks and 8 weeks after the intervention. ETHICS AND DISSEMINATION: The entire project has been approved by the ethics committee of the Beijing University of Chinese Medicine (2020BZYLL0903). DISCUSSION: This is a multicenter randomized controlled trial for IBS in China. The findings may shed light on the efficacy of acupuncture as an alternative to conventional IBS treatment. The results of the trial will be disseminated in peer-reviewed publications. TRIAL REGISTRATION: Chinese Clinical Trials Register ChiCTR2000041215 . First registered on 12 December 2020. http://www.chictr.org.cn/ .


Asunto(s)
Terapia por Acupuntura , Síndrome del Colon Irritable , Puntos de Acupuntura , Terapia por Acupuntura/efectos adversos , Diarrea , Humanos , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/terapia , Estudios Multicéntricos como Asunto , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA