Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3209, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615033

RESUMEN

The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.

2.
Angew Chem Int Ed Engl ; : e202402841, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647519

RESUMEN

The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2% and 34.6 mg h-1 mgcat-1 (75.5 mg h-1 mgIr-1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in-situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.

3.
J Am Chem Soc ; 146(13): 9012-9025, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516778

RESUMEN

The development of efficient and stable catalysts for hydrogen production from electrolytic water in a wide pH range is of great significance in alleviating the energy crisis. Herein, Pt nanoparticles (NPs) anchored on the vacancy of high entropy rare earth oxides (HEREOs) were prepared for the first time for highly efficient hydrogen production by water electrolysis. The prepared Pt-(LaCeSmYErGdYb)O showed excellent electrochemical performances, which require only 12, 57, and 77 mV to achieve a current density of 100 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS environments, respectively. In addition, Pt-(LaCeSmYErGdYb)O has successfully worked at 400 mA cm-2 @ 60 °C for 100 h in 0.5 M H2SO4, presenting the high mass activity of 37.7 A mg-1Pt and turnover frequency (TOF) value of 38.2 s-1 @ 12 mV, which is far superior to the recently reported hydrogen evolution reaction (HER) catalysts. Density functional theory (DFT) calculations have revealed that the interactions between Pt and HEREO have optimized the electronic structures for electron transfer and the binding strength of intermediates. This further leads to optimized proton binding and water dissociation, supporting the highly efficient and robust HER performances in different environments. This work provides a new idea for the design of efficient RE-based electrocatalysts.

4.
Small ; : e2401506, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431925

RESUMEN

Reaching rapid reaction kinetics of oxygen reduction (ORR) and oxygen evolution reactions (OER) is critical for realizing efficient rechargeable zinc-air batteries (ZABs). Herein, a novel CoNi-CoN3 composite site containing CoNi alloyed nanoparticles and CoN3 moieties is first constructed in N-doped carbon nanosheet matrix (CoNi-CoN3 /C). Benefiting from the high electroactivity of CoNi-CoN3 composite sites and large surface area, CoNi-CoN3 /C shows a superior half-wave potential (0.88 V versus RHE) for ORR and a small overpotential (360 mV) for OER at 10 mA cm-2 . Theoretical calculations have demonstrated that the introduction of CoNi alloys has modulated the electronic distributions near the CoN3 moiety, inducing the d-band center of CoNi-CoN3 composite site to shift down, thus stabilizing the valence state of Co active sites and balancing the adsorption of OER/ORR intermediates. Accordingly, the reaction energy trends exhibit optimized overpotentials for OER/ORR, leading to superior battery performances. For aqueous and flexible quasi-solid-state rechargeable ZABs with CoNi-CoN3 /C as catalyst, a large power density (250 mW cm-2 ) and high specific capacity (804 mAh g-1 ) are achieved. The in-depth understanding of the electroactivity enhancement mechanism of interactive metal nanoparticles and metal coordinated with nitrogen (MNx ) moieties is crucial for designing novel high-performance metal/nitrogen-doped carbon (M─N─C) catalysts.

5.
Nanomicro Lett ; 16(1): 161, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526682

RESUMEN

With the merits of the high energy density of batteries and power density of supercapacitors, the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required. However, the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan. It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors. Using 'water in salt' electrolytes can effectively broaden their electrochemical windows, but this is at the expense of high cost, low ionic conductivity, and narrow temperature compatibility, compromising the electrochemical performance of the Zn-ion hybrid supercapacitors. Thus, designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary. We developed a dilute water/acetonitrile electrolyte (0.5 m Zn(CF3SO3)2 + 1 m LiTFSI-H2O/AN) for Zn-ion hybrid supercapacitors, which simultaneously exhibited expanded electrochemical window, decent ionic conductivity, and broad temperature compatibility. In this electrolyte, the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI- anions. As a result, a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.

6.
ACS Nano ; 18(9): 7192-7203, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385434

RESUMEN

Electrocatalytic carbon dioxide reduction reaction (CO2RR) toward value-added chemicals/fuels has offered a sustainable strategy to achieve a carbon-neutral energy cycle. However, it remains a great challenge to controllably and precisely regulate the coordination environment of active sites in catalysts for efficient generation of targeted products, especially the multicarbon (C2+) products. Herein we report the coordination environment engineering of metal centers in coordination polymers for efficient electroreduction of CO2 to C2+ products under neutral conditions. Significantly, the Cu coordination polymer with Cu-N2S2 coordination configuration (Cu-N-S) demonstrates superior Faradaic efficiencies of 61.2% and 82.2% for ethylene and C2+ products, respectively, compared to the selective formic acid generation on an analogous polymer with the Cu-I2S2 coordination mode (Cu-I-S). In situ studies reveal the balanced formation of atop and bridge *CO intermediates on Cu-N-S, promoting C-C coupling for C2+ production. Theoretical calculations suggest that coordination environment engineering can induce electronic modulations in Cu active sites, where the d-band center of Cu is upshifted in Cu-N-S with stronger selectivity to the C2+ products. Consequently, Cu-N-S displays a stronger reaction trend toward the generation of C2+ products, while Cu-I-S favors the formation of formic acid due to the suppression of C-C couplings for C2+ pathways with large energy barriers.

7.
Nat Commun ; 15(1): 1097, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321034

RESUMEN

Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru-1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt-1) and PtRu/C (1.24 A mgPt+Ru-1). More importantly, the peak power density and specific power density are as high as 1.84 W cm-2 and 18.4 W mgPt+Ru-1 with a low loading (0.1 mg cm-2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond.

8.
Adv Mater ; 36(14): e2310918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38170168

RESUMEN

Despite of urgent needs for highly stable and efficient electrochemical water-splitting devices, it remains extremely challenging to acquire highly stable oxygen evolution reaction (OER) electrocatalysts under harsh industrial conditions. Here, a successful in situ synthesis of FeCoNiMnCr high-entropy alloy (HEA) and high-entropy oxide (HEO) heterocatalysts via a Cr-induced spontaneous reconstruction strategy is reported, and it is demonstrated that they deliver excellent ultrastable OER electrocatalytic performance with a low overpotential of 320 mV at 500 mA cm-2 and a negligible activity loss after maintaining at 100 mA cm-2 for 240 h. Remarkably, the heterocatalyst holds outstanding long-term stability under harsh industrial condition of 6 m KOH and 85 °C at a current density of as high as 500 mA cm-2 over 500 h. Density functional theory calculations reveal that the formation of the HEA-HEO heterostructure can provide electroactive sites possessing robust valence states to guarantee long-term stable OER process, leading to the enhancement of electroactivity. The findings of such highly stable OER heterocatalysts under industrial conditions offer a new perspective for designing and constructing efficient high-entropy electrocatalysts for practical industrial water splitting.

9.
Adv Mater ; 36(14): e2313548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279631

RESUMEN

Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.

10.
Adv Mater ; : e2311731, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267017

RESUMEN

Electrochemical ethanol oxidation is crucial to directly convert a biorenewable liquid fuel with high energy density into electrical energy, but it remains an inefficient reaction even with the best catalysts. To boost ethanol oxidation, developing multimetallic nanoalloy has emerged as one of the most effective strategies, yet faces a challenge in the rational engineering of multimetallic active-site ensembles at atomic-level. Herein, starting from typical PtCu nanocrystals, an atomic Sn diffusion strategy is developed to construct well-defined Pt47 Sn12 Cu41 octopod nanoframes, which is enclosed by high-index facets of n (111)-(111), such as {331} and {221}. Pt47 Sn12 Cu41 achieves a high mass activity of 3.10 A mg-1 Pt and promotes the C-C bond breaking and oxidation of poisonous CO intermediate, representing a state-of-the-art electrocatalyst toward ethanol oxidation in acidic electrolyte. Density functional theory (DFT) calculations have confirmed that the introduction of Sn improves the electroactivity by uplifting the d-band center through the s-p-d coupling. Meanwhile, the strong binding of ethanol and the reduced energy barrier of CO oxidation guarantee a highly efficient ethanol oxidation process with improved Faradic efficiency of C1 products. This work offers a promising strategy for constructing novel multimetallic nanoalloys tailored by atomic metal sites as the efficient electrocatalysts.

11.
Proc Natl Acad Sci U S A ; 120(50): e2311149120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064508

RESUMEN

Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.

12.
Natl Sci Rev ; 10(9): nwad162, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37900058

RESUMEN

Oxygen reduction reactions (ORRs) involve a multistep proton-coupled electron process accompanied by the conversion of the apodictic spin configuration. Understanding the role of spin configurations of metals in the adsorption and desorption of oxygen intermediates during ORRs is critical for the design of efficient ORR catalysts. Herein, a platinum-rare-earth-metal-based alloy catalyst, Pt2Gd, is introduced to reveal the role of spin configurations in the catalytic activity of materials. The catalyst exhibits a unique intrinsic spin reconfiguration because of interactions between the Gd-4f and Pt-5d orbitals. The adsorption and desorption of the oxygen species are optimized by modifying the spin symmetry and electronic structures of the material for increased ORR efficiency. The Pt2Gd alloy exhibits a half-wave potential of 0.95 V and a superior mass activity of 1.5 A·mgPt-1 in a 0.1 M HClO4 electrolyte, as well as higher durability than conventional Pt/C catalysts. Theoretical calculations have proven that the spin shielding effect of Gd pairs increases the spin symmetry of Pt-5d orbitals and adsorption preferences toward spin-polarized intermediates to facilitate ORR. This work clarifies the impact of modulating the intrinsic spin state of Pt through the interaction with the local high spin 4f orbital electrons in rare-earth metals, with the aim of boosting the spin-related oxygen reduction reaction, thus fundamentally contributing to the understanding of new descriptors that control ORR activity.

13.
Angew Chem Int Ed Engl ; 62(46): e202312644, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37699862

RESUMEN

Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni3 N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni3 N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni3 N/NiO compared to Ru-Ni3 N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni3 N/NiO catalyst with a 2D Ni3 N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm-2 , respectively. Furthermore, the Ru-Ni3 N/NiO-based EWS device can realize an industrial current density (1000 mA cm-2 ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm-2 ) in alkaline pure water.

14.
Small Methods ; 7(11): e2300430, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37653620

RESUMEN

Solar energy utilization is of great significance to current challenges of the energy crisis and environmental pollution, which benefit the development of the global community to achieve carbon neutrality goals. Hydrogen energy is also treated as a good candidate for future energy supply since its combustion not only supplies high-density energy but also shows no pollution gas. In particular, photocatalytic water splitting has attracted increasing research as a promising method for H2 production. Recently, single-atom (SA) photocatalysts have been proposed as a potential solution to improve catalytic efficiency and lower the costs of photocatalytic water splitting for H2 generation. Owing to the maximized atom utilization rate, abundant surface active sites, and tunable coordination environment, SA photocatalysts have achieved significant progress. This review reviews developments of advanced SA photocatalysts for H2 generation regarding the different support materials. The recent progress of titanium dioxide, metal-organic frameworks, two-dimensional carbon materials, and red phosphorus supported SA photocatalysts are carefully discussed. In particular, the material designs, reaction mechanisms, modulation strategies, and perspectives are highlighted for realizing improved solar-to-energy efficiency and H2 generation rate. This work will supply significant references for future design and synthesis of advanced SA photocatalysts.

16.
Proc Natl Acad Sci U S A ; 120(32): e2306461120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523530

RESUMEN

Electrochemical nitrate reduction reaction (NO3RR) to ammonia has been regarded as a promising strategy to balance the global nitrogen cycle. However, it still suffers from poor Faradaic efficiency (FE) and limited yield rate for ammonia production on heterogeneous electrocatalysts, especially in neutral solutions. Herein, we report one-pot synthesis of ultrathin nanosheet-assembled RuFe nanoflowers with low-coordinated Ru sites to enhance NO3RR performances in neutral electrolyte. Significantly, RuFe nanoflowers exhibit outstanding ammonia FE of 92.9% and yield rate of 38.68 mg h-1 mgcat-1 (64.47 mg h-1 mgRu-1) at -0.30 and -0.65 V (vs. reversible hydrogen electrode), respectively. Experimental studies and theoretical calculations reveal that RuFe nanoflowers with low-coordinated Ru sites are highly electroactive with an increased d-band center to guarantee efficient electron transfer, leading to low energy barriers of nitrate reduction. The demonstration of rechargeable zinc-nitrate batteries with large-specific capacity using RuFe nanoflowers indicates their great potential in next-generation electrochemical energy systems.

17.
J Am Chem Soc ; 145(25): 14133-14142, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317545

RESUMEN

Electrocatalytic reduction of carbon dioxide into value-added chemical fuels is a promising way to achieve carbon neutrality. Bismuth-based materials have been considered as favorable electrocatalysts for converting carbon dioxide to formic acid. Moreover, size-dependent catalysis offers significant advantages in catalyzed heterogeneous chemical processes. However, the size effects of bismuth nanoparticles on formic acid production have not been fully explored. Here, we prepared Bi nanoparticles uniformly supported on porous TiO2 substrate electrocatalytic materials by in situ segregation of the Bi element from Bi4Ti3O12. The Bi-TiO2 electrocatalyst with Bi nanoparticles of 2.83 nm displays a Faradaic efficiency of greater than 90% over a wide potential range of 400 mV. Theoretical calculations have also demonstrated subtle electronic structural evolutions induced by the size variations of Bi nanoparticles, where the 2.83 nm Bi nanoparticles display the most active p-band and d-band centers to guarantee high electroactivity toward CO2RR.

18.
Front Chem ; 11: 1197010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388947

RESUMEN

Transition metal (TM) single atom catalysts (SACs) are of great potential for photocatalytic H2 production because of their abundant catalytic active sites and cost-effectiveness. As a promising support material, red phosphorus (RP) based SACs are still rarely investigated. In this work, we have carried out systematic theoretical investigations by anchoring TM atoms (Fe, Co, Ni, Cu) on RP for efficient photocatalytic H2 generation. Our density functional theory (DFT) calculations have revealed that 3d orbitals of TM locate close to the Fermi level to guarantee efficient electron transfer for photocatalytic performances. Compared with pristine RP, the introduction of single atom TM on the surface exhibit narrowed bandgaps, resulting in easier spatial separation for photon-generated charge carriers and an extended photocatalytic absorption window to the NIR range. Meanwhile, the H2O adsorptions are also highly preferred on the TM single atoms with strong electron exchange, which benefits the subsequent water-dissociation process. Due to the optimized electronic structure, the activation energy barrier of water-splitting has been remarkably reduced in RP-based SACs, revealing their promising potential for high-efficiency H2 production. Our comprehensive explorations and screening of novel RP-based SACs will offer a good reference for further designing novel photocatalysts for high-efficiency H2 generation.

19.
J Am Chem Soc ; 145(32): 17577-17587, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37253225

RESUMEN

Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh-O5/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm-2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d-d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh-O5/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh-O5/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.

20.
Adv Mater ; 35(28): e2302485, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37015027

RESUMEN

For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s-1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm-2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.


Asunto(s)
Cerio , Humanos , Carbono , Suministros de Energía Eléctrica , Electrodos , Hipoxia , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...