Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Oncol ; 12: 938385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912228

RESUMEN

EWSR1-rearranged tumors encompass a rare and heterogeneous group of entities with features of the central nervous system (CNS) mesenchymal and primary glial/neuronal tumors. EWSR1-PLAGL1 gene fusion is a particularly rare form of rearrangement. We presented a recurrent intracranial EWSR1-PLAGL1 rearranged tumor and reviewed the relevant literature. In this case, histopathology and immunohistochemistry (IHC) were evaluated for both the primary and relapsed tumors. Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were performed for the relapsed tumor. We compared the morphology, IHC results and molecular features with the previously reported EWSR1-PLAGL1 rearranged CNS tumors. Our case exhibited a unique feature with a variable biphasic pattern of epithelioid differentiation, which differed from the two reported groups. The primary and relapsed tumors both expressed cytokeratin of the focal area with epithelioid differentiation. The recurrent tumor showed an increased proliferation index (average Ki-67 index of 15%) compared with the primary tumor (average Ki-67 index of 5%). NGS showed that TERT promoter mutation was the only molecular change besides EWSR1-PLAGL1 fusion. Our study provides further insight into intracranial tumors with EWSR1-PLAGL1 fusion, representing a distinct CNS tumor with no-reported histological and immunohistochemical features. Future studies, particularly for the biphasic differentiation and the role of TERT promoter mutation were needed to clarify this unusual chromosomal rearrangement in the CNS tumor.

2.
Ann Surg Oncol ; 29(12): 7386-7399, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35829796

RESUMEN

BACKGROUND: Metabolic disorders are significant in the occurrence and development of malignant tumors. Changes of specific metabolites and metabolic pathways are molecular therapeutic targets. This study aims to determine the metabolic differences between oral squamous cell carcinoma (OSCC) tissues and paired adjacent noncancerous tissues (ANT) through liquid chromatography-mass spectrometry (LC-MS). SPHK1 is a key enzyme in sphingolipid metabolism. This study also investigates the potential role of SPHK1 in OSCC. MATERIALS AND METHODS: This study used LC-MS to analyze metabolic differences between OSCC tissues and paired ANT. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were applied to explain the significance of phospholipid metabolism pathways in the occurrence and development of OSCC. Through further experiments, we confirmed the oncogenic phenotypes of SPHK1 in vitro and in vivo, including proliferation, migration, and invasion. RESULTS: The sphingolipid metabolic pathway was significantly activated in OSCC, and the key enzyme SPHK1 was significantly upregulated in oral cancer tissues, predicting poor OSCC prognosis. In this study, SPHK1 overexpression was associated with high-grade malignancy and poor OSCC prognosis. SPHK1 targeted NF-κB by facilitating p65 expression to regulate OSCC tumor progression and promote metastasis. CONCLUSIONS: This study identified metabolic differences between OSCC and paired ANT, explored the carcinogenic role of overexpressed SPHK1, and revealed the association of SPHK1 with poor OSCC prognosis. SPHK1 targets NF-κB signaling by facilitating p65 expression to regulate tumor progression and promote tumor metastasis, providing potential therapeutic targets for diagnosing and treating oral tumors.


Asunto(s)
Neoplasias de la Boca , Fosfotransferasas (Aceptor de Grupo Alcohol) , Carcinoma de Células Escamosas de Cabeza y Cuello , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Boca/patología , FN-kappa B/metabolismo , Fosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Esfingolípidos/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
3.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3215-3223, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35851114

RESUMEN

Advanced glycation end products(AGEs) can lead to many diseases such as diabetes and its complications. In this study, an in vitro non-enzymatic glycosylation reaction model-bovine serum albumin/methylglyoxal(BSA/MGO) reaction system was constructed and incubated with Cortex Moutan extract. High performance liquid chromatography(HPLC) and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) were used to detect and identify the active components that inhibited the formation of AGEs in the co-incubation solution of Cortex Moutan extract and MGO, and differential components such as salvianan, paeoniside, benzoylpaeoniflorin, mudanpioside J, galloyloxypaeoniflorin, benzoyloxy-paeoniflorin, 5-hydroxy-3 s-hydroxymethyl-6-methyl-2,3-dihydro benzofuran, and galloylpaeoniflorin were screened out, which were inferred to be the potential active components of Cortex Moutan extract to capture MGO. In addition, BSA-glucose reaction system was performed to investigate the influence of different concentrations of Cortex Moutan extract(decoction concentrations: 40, 80, 120, 160, and 200 mg·mL~(-1)) on inhibiting the production of AGEs in vitro. The inhibitory effects of Cortex Moutan extract and the differential components galloylpaeoniflorin and benzoyl paeoniflorin on the production of AGEs in human umbilical vein endothelial cells(HUVECs) induced by high glucose was further evaluated. Cell apoptosis was observed by acridine orange and ethidium bromide(AO/EB) double fluorescence staining. The results showed that Cortex Moutan Cortex extract and its differential components had certain inhibitory effects on the formation of AGEs, and could reduce cell apoptosis. This study provided reference for the treatment of diabetic vascular complications by Cortex Moutan inhibiting the toxic AGEs.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Glucosa , Productos Finales de Glicación Avanzada , Células Endoteliales de la Vena Umbilical Humana , Humanos , Óxido de Magnesio
4.
Carcinogenesis ; 43(7): 682-692, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35380635

RESUMEN

MicroRNA (miR)-23b-3p is known to target various genes that are involved in cancer-related pathways. Exosomes are emerging intercellular communication agents. Exosomes secreted by cancer cells can deliver active molecules to the surrounding stromal cells, thereby influencing the recipient cells and promoting the development of cancers. However, the role of exosomal miR-23b-3p in salivary adenoid cystic carcinoma (SACC) is not yet clear. In this study, we set out to investigate the potential role of cancer-derived exosomal miR-23b-3p-related phosphatase and tensin homolog deleted on chromosome 10 in the alteration of angiogenesis and vascular permeability in SACC. We investigated the effect of exosomal miR-23b-3p on the progression of SACC. In vitro experiments indicated that exosomal miR-23b-3p led to an upregulation of vascular permeability, and reduced expression of tight junction proteins. In addition, exosomal miR-23b-3p also enhanced angiogenesis and migration. Next, the angiogenic effect of exosomal miR-23b-3p was validated in vivo, as it led to an increase in the tumor microvasculature. Furthermore, the growth rate of SACC was faster after injection of exosomes loaded with cholesterol-modified miR-23b-3p in mice. In conclusion, these results revealed that SACC cell-derived exosomes play an important role in promoting angiogenesis and local vascular microleakage of SACC by transporting miR-23b-3p, which suggests that miR-23b-3p in the exosomes may be a potential biomarker for distant metastasis of SACC. This suggests the potential of a novel therapeutic target by delivering anti-miR-23b-3p that focuses on exosomes.


Asunto(s)
Carcinoma Adenoide Quístico , Exosomas , MicroARNs , Fosfohidrolasa PTEN/metabolismo , Neoplasias de las Glándulas Salivales , Animales , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/metabolismo , Carcinoma Adenoide Quístico/patología , Línea Celular Tumoral , Movimiento Celular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neoplasias de las Glándulas Salivales/metabolismo
5.
Arch Oral Biol ; 135: 105345, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026647

RESUMEN

OBJECTIVE: The current study aimed to explore the effect of Follistatin-like 1 (FSTL1) on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in an inflammatory environment. DESIGN: Animal models of FSTL1-deficiency and wild-type mice were used, and the micro-CT images of the femoral head were evaluated. Mouse bone marrow mesenchymal stem cells were treated with various concentrations of recombinant FSTL1 (rFSTL1) in an inflammatory environment in vitro. Meanwhile, overexpression or knockdown of FSTL1 through lentiviral transfection was performed. Alkaline phosphatase (ALP) activity was tested, and Alizarin Red staining (ARS) was performed to evaluate osteogenic differentiation ability. The mRNA expression level of osteogenesis-related genes was detected by RT-qPCR. RESULTS: In vivo experiments revealed a higher number of femoral skulls, higher trabecular thickness, smaller trabecular space, and less osteoporosis in FSTL1-knockdown mice than in the wild-type mice. The BMSCs with overexpression of FSTL1 or those treated with recombinant FSTL1 (rFSTL1) showed suppression of ALP activity, calcium nodule formation, and expression of osteogenesis-related genes osteopontin (OPN), osteocalcin (OCN), collagen type I alpha 1 (Col1α1), and more importantly, rFSTL1 functions in a dose-dependent manner. In contrast, FSTL1 knockdown promoted the osteogenesis activity and the expression of these osteogenesis-related genes in vitro. CONCLUSIONS: FSTL1 is an osteogenic suppressor that inhibits the osteogenic differentiation of BMSCs during inflammation and it can be a new target for bone regeneration.


Asunto(s)
Diferenciación Celular , Proteínas Relacionadas con la Folistatina/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis , Animales , Células de la Médula Ósea , Células Cultivadas , Inflamación , Ratones
6.
J Oral Pathol Med ; 51(2): 160-171, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34797582

RESUMEN

BACKGROUND: miRNAs and mRNAs have been significantly implicated in tumorigenesis and served as promising prognostic biomarkers for human cancer. Hence, this study was aimed to develop the pivotal miRNA biomarkers-based prognostic signature for salivary adenoid cystic carcinoma. METHODS: The miRNA and mRNA expression data were integrated from the gene expression omnibus database to study their involvement in salivary adenoid cystic carcinoma development and progression. Gene ontology and kyoto encyclopedia of genes and genomes were conducted to analyze the biological pathways. Reverse transcription-quantitative PCR was used to verify the expression of selected miRNAs in salivary adenoid cystic carcinoma and corresponding normal tissues. RESULTS: There were 386 differentially expressed genes: 158 upregulated and 228 downregulated genes and 102 differentially expressed miRNAs: 78 upregulated and 24 downregulated miRNAs in the salivary adenoid cystic carcinoma samples. A miRNA-mRNA network containing 11 miRNAs and 199 genes was subsequently constructed. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis revealed that the genes targeted by the 11 miRNAs were mostly involved in tumor-related pathways and processes, such as miRNAs in cancer, focal adhesion, neurotrophin signaling pathway, and the PI3K-Akt signaling pathway. Among them, 4 miRNAs (miR-375, miR-494, miR-34c-5p, and miR-331-3p) were selected to verify by reverse transcription-quantitative PCR in 36 pairs of collected salivary adenoid cystic carcinoma and adjacent nontumor samples. Overall survival analysis revealed that the higher expression of miR-331-3p was significantly associated with a worst overall survival and multivariate Cox regression analysis suggested that hsa-miR-331-3p could be an independent prognostic factor for salivary adenoid cystic carcinoma. CONCLUSION: Our results revealed that 4-miRNAs signature was a powerful prognostic biomarker for salivary adenoid cystic carcinoma, which provide a basis for exploring deeper mechanisms regarding the progression of salivary adenoid cystic carcinoma, and leading to the development of potential therapeutic strategies.


Asunto(s)
Carcinogénesis/genética , Carcinoma Adenoide Quístico , MicroARNs , Neoplasias de las Glándulas Salivales , Carcinoma Adenoide Quístico/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , MicroARNs/genética , Fosfatidilinositol 3-Quinasas , Neoplasias de las Glándulas Salivales/genética
7.
Pathol Res Pract ; 227: 153620, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560416

RESUMEN

The progression of salivary adenoid cystic carcinoma (SACC) is closely related to abnormal gene expression. Herein, the role of Sphk1 in SACC was explored. Sphk1 was overexpressed in SACC tissues. In SACC cell lines, Sphk1 induced cell proliferation, inhibited apoptosis, and promoted cell migration. Moreover, Sphk1 overexpression induced up-regulation of the PI3K protein level and AKT phosphorylation level. Rescue assays further showed that activation of the Sphk1 /PI3K/Akt pathway affected various biological functions of SACC cells. Together, these findings suggested that Sphk1 promotes salivary tumorigenesis by activating the PI3K/ Akt pathway, which may provide novel intervention targets for SACC treatment.


Asunto(s)
Carcinoma Adenoide Quístico/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de las Glándulas Salivales/enzimología , Apoptosis , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Transducción de Señal
8.
Medicine (Baltimore) ; 100(24): e26279, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34128861

RESUMEN

ABSTRACT: Early determination of coronavirus disease 2019 (COVID-19) pneumonia from numerous suspected cases is critical for the early isolation and treatment of patients.The purpose of the study was to develop and validate a rapid screening model to predict early COVID-19 pneumonia from suspected cases using a random forest algorithm in China.A total of 914 initially suspected COVID-19 pneumonia in multiple centers were prospectively included. The computer-assisted embedding method was used to screen the variables. The random forest algorithm was adopted to build a rapid screening model based on the training set. The screening model was evaluated by the confusion matrix and receiver operating characteristic (ROC) analysis in the validation.The rapid screening model was set up based on 4 epidemiological features, 3 clinical manifestations, decreased white blood cell count and lymphocytes, and imaging changes on chest X-ray or computed tomography. The area under the ROC curve was 0.956, and the model had a sensitivity of 83.82% and a specificity of 89.57%. The confusion matrix revealed that the prospective screening model had an accuracy of 87.0% for predicting early COVID-19 pneumonia.Here, we developed and validated a rapid screening model that could predict early COVID-19 pneumonia with high sensitivity and specificity. The use of this model to screen for COVID-19 pneumonia have epidemiological and clinical significance.


Asunto(s)
Algoritmos , Prueba de COVID-19/métodos , COVID-19/diagnóstico , Tamizaje Masivo/métodos , SARS-CoV-2/aislamiento & purificación , Adulto , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Sensibilidad y Especificidad
9.
World J Clin Cases ; 9(3): 697-706, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33553411

RESUMEN

BACKGROUND: Juvenile-onset primary open-angle glaucoma (JOAG), characterized by severe elevation of intraocular pressure and optic neuropathy prior to the age of 40, is a rare subtype of primary open-angle glaucoma. Several genetic mutations have been associated with JOAG. CASE SUMMARY: The proband patient was a young male, diagnosed with primary open-angle glaucoma at the age of 27. The patient and his unaffected parents who have been excluded from classic genetic mutations for primary open-angle glaucoma were included to explore for other possible genetic variants through whole genome sequencing and bioinformatics analysis. In this trio, we found two heterozygous variants inherited from the parents in the proband: c.281G>A, p.Arg94His in OLFM2 and c.177C>G, p.Ile59Met in SIX6. Both genetic mutations are predicted through bioinformatics analysis to replace evolutionary conserved amino acids, therefore rendering a pathogenic effect on proteins. In contrast, very low frequencies for these genetic mutations were recorded in most common control databases. CONCLUSION: This is the first report on coinherited mutations of OLFM2 and SIX6 in a JOAG family, which shows the complexity of JOAG inheritance. Large-scale clinical screening and molecular functional investigations on these coinherited mutations are imperative to improve our understanding of the development of JOAG.

10.
Sci Rep ; 11(1): 2933, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536460

RESUMEN

COVID-19 is a newly emerging infectious disease, which is generally susceptible to human beings and has caused huge losses to people's health. Acute respiratory distress syndrome (ARDS) is one of the common clinical manifestations of severe COVID-19 and it is also responsible for the current shortage of ventilators worldwide. This study aims to analyze the clinical characteristics of COVID-19 ARDS patients and establish a diagnostic system based on artificial intelligence (AI) method to predict the probability of ARDS in COVID-19 patients. We collected clinical data of 659 COVID-19 patients from 11 regions in China. The clinical characteristics of the ARDS group and no-ARDS group of COVID-19 patients were elaborately compared and both traditional machine learning algorithms and deep learning-based method were used to build the prediction models. Results indicated that the median age of ARDS patients was 56.5 years old, which was significantly older than those with non-ARDS by 7.5 years. Male and patients with BMI > 25 were more likely to develop ARDS. The clinical features of ARDS patients included cough (80.3%), polypnea (59.2%), lung consolidation (53.9%), secondary bacterial infection (30.3%), and comorbidities such as hypertension (48.7%). Abnormal biochemical indicators such as lymphocyte count, CK, NLR, AST, LDH, and CRP were all strongly related to the aggravation of ARDS. Furthermore, through various AI methods for modeling and prediction effect evaluation based on the above risk factors, decision tree achieved the best AUC, accuracy, sensitivity and specificity in identifying the mild patients who were easy to develop ARDS, which undoubtedly helped to deliver proper care and optimize use of limited resources.


Asunto(s)
COVID-19/patología , Aprendizaje Automático , Síndrome de Dificultad Respiratoria/diagnóstico , Adulto , Área Bajo la Curva , Índice de Masa Corporal , COVID-19/complicaciones , COVID-19/virología , Comorbilidad , Femenino , Humanos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Curva ROC , Síndrome de Dificultad Respiratoria/etiología , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Factores Sexuales
11.
Sci Rep ; 11(1): 3863, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594193

RESUMEN

Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP.


Asunto(s)
COVID-19/diagnóstico , COVID-19/epidemiología , Tamizaje Masivo , Modelos Biológicos , Neumonía/diagnóstico , SARS-CoV-2/fisiología , Adulto , China/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC
12.
Acta Pharmacol Sin ; 42(9): 1524-1534, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33239687

RESUMEN

A series of 6-substituted carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators were discovered through 6-position modification guided by insights from the crystallographic profiles of the "short" inverse agonist 6. With the increase in the size of the 6-position substituents, the "short" inverse agonist 6 first reversed its function to agonists and then to "long" inverse agonists. The cocrystal structures of RORγt complexed with the representative "short" inverse agonist 6 (PDB: 6LOB), the agonist 7d (PDB: 6LOA) and the "long" inverse agonist 7h (PDB: 6LO9) were revealed by X-ray analysis. However, minor differences were found in the binding modes of "short" inverse agonist 6 and "long" inverse agonist 7h. To further reveal the molecular mechanisms of different RORγt inverse agonists, we performed molecular dynamics simulations and found that "short" or "long" inverse agonists led to different behaviors of helixes H11, H11', and H12 of RORγt. The "short" inverse agonist 6 destabilizes H11' and dislocates H12, while the "long" inverse agonist 7h separates H11 and unwinds H12. The results indicate that the two types of inverse agonists may behave differently in downstream signaling, which may help identify novel inverse agonists with different regulatory mechanisms.


Asunto(s)
Carbazoles/farmacología , Cristalografía , Agonismo Inverso de Drogas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Receptores de Ácido Retinoico/agonistas , Carbazoles/síntesis química , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad , Receptor de Ácido Retinoico gamma
13.
Front Pharmacol ; 11: 1071, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765274

RESUMEN

BACKGROUND: Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing an unprecedented pandemic. However, there is no specific antiviral therapy for coronavirus disease 2019 (COVID-19). We conducted a clinical trial to compare the effectiveness of three antiviral treatment regimens in patients with mild to moderate COVID-19. METHODS: This was a single-center, randomized, open-labeled, prospective clinical trial. Eligible patients with mild to moderate COVID-19 were randomized into three groups: ribavirin (RBV) plus interferon-α (IFN-α), lopinavir/ritonavir (LPV/r) plus IFN-α, and RBV plus LPV/r plus IFN-α at a 1:1:1 ratio. Each patient was invited to participate in a 28-d follow-up after initiation of an antiviral regimen. The outcomes include the difference in median interval to SARS-CoV-2 nucleic acid negativity, the proportion of patients with SARS-CoV-2 nucleic acid negativity at day 14, the mortality at day 28, the proportion of patients re-classified as severe cases, and adverse events during the study period. RESULTS: In total, we enrolled 101 patients in this study. Baseline clinical and laboratory characteristics of patients were comparable among the three groups. In the analysis of intention-to-treat data, the median interval from baseline to SARS-CoV-2 nucleic acid negativity was 12 d in the LPV/r+IFN-α-treated group, as compared with 13 and 15 d in the RBV+IFN-α-treated group and in the RBV+LPV/r+ IFN-α-treated group, respectively (p=0.23). The proportion of patients with SARS-CoV-2 nucleic acid negativity in the LPV/r+IFN-α-treated group (61.1%) was higher than the RBV+ IFN-α-treated group (51.5%) and the RBV+LPV/r+IFN-α-treated group (46.9%) at day 14; however, the difference between these groups was calculated to be statistically insignificant. The RBV+LPV/r+IFN-α-treated group developed a significantly higher incidence of gastrointestinal adverse events than the LPV/r+ IFN-α-treated group and the RBV+ IFN-α-treated group. CONCLUSIONS: Our results indicate that there are no significant differences among the three regimens in terms of antiviral effectiveness in patients with mild to moderate COVID-19. Furthermore, the combination of RBV and LPV/r is associated with a significant increase in gastrointestinal adverse events, suggesting that RBV and LPV/r should not be co-administered to COVID-19 patients simultaneously. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, ID: ChiCTR2000029387. Registered on January 28, 2019.

14.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20120881

RESUMEN

With the dramatically fast spread of COVID-9, real-time reverse transcription polymerase chain reaction (RT-PCR) test has become the gold standard method for confirmation of COVID-19 infection. However, RT-PCR tests are complicated in operation andIt usually takes 5-6 hours or even longer to get the result. Additionally, due to the low virus loads in early COVID-19 patients, RT-PCR tests display false negative results in a number of cases. Analyzing complex medical datasets based on machine learning provides health care workers excellent opportunities for developing a simple and efficient COVID-19 diagnostic system. This paper aims at extracting risk factors from clinical data of early COVID-19 infected patients and utilizing four types of traditional machine learning approaches including logistic regression(LR), support vector machine(SVM), decision tree(DT), random forest(RF) and a deep learning-based method for diagnosis of early COVID-19. The results show that the LR predictive model presents a higher specificity rate of 0.95, an area under the receiver operating curve (AUC) of 0.971 and an improved sensitivity rate of 0.82, which makes it optimal for the screening of early COVID-19 infection. We also perform the verification for generality of the best model (LR predictive model) among Zhejiang population, and analyze the contribution of the factors to the predictive models. Our manuscript describes and highlights the ability of machine learning methods for improving the accuracy and timeliness of early COVID-19 infection diagnosis. The higher AUC of our LR-base predictive model makes it a more conducive method for assisting COVID-19 diagnosis. The optimal model has been encapsulated as a mobile application (APP) and implemented in some hospitals in Zhejiang Province.

15.
Acta Pharmacol Sin ; 40(11): 1480-1489, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31316175

RESUMEN

The retinoic acid receptor-related orphan receptor (ROR) γt receptor is a member of nuclear receptors, which is indispensable for the expression of pro-inflammatory cytokine IL-17. RORγt has been established as a drug target to design and discover novel treatments for multiple inflammatory and immunological diseases. It is important to elucidate the molecular mechanisms of how RORγt is activated by an agonist, and how the transcription function of RORγt is interrupted by an inverse agonist. In this study we performed molecular dynamics simulations on four different RORγt systems, i.e., the apo protein, protein bound with agonist, protein bound with inverse agonist in the orthosteric-binding pocket, and protein bound with inverse agonist in the allosteric-binding pocket. We found that the orthosteric-binding pocket in the apo-form RORγt was mostly open, confirming that apo-form RORγt was constitutively active and could be readily activated (ca. tens of nanoseconds scale). The tracked data from MD simulations supported that RORγt could be activated by an agonist binding at the orthosteric-binding pocket, because the bound agonist helped to enhance the triplet His479-Tyr502-Phe506 interactions and stabilized H12 structure. The stabilized H12 helped RORγt to form the protein-binding site, and therefore made the receptor ready to recruit a coactivator molecule. We also showed that transcription function of RORγt could be interrupted by the binding of inverse agonist at the orthosteric-binding pocket or at the allosteric-binding site. After the inverse agonist was bound, H12 either structurally collapsed, or reorientated to a different position, at which the presumed protein-binding site was not able to be formed.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Sitio Alostérico , Anilidas/metabolismo , Agonismo Inverso de Drogas , Humanos , Indazoles/metabolismo , Simulación de Dinámica Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/química , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Unión Proteica , Piridinas/metabolismo
16.
Microbiologyopen ; 8(10): e873, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31094067

RESUMEN

The homeostasis of the gut microbiome is crucial for human health and for liver function. However, it has not been established whether the gut microbiome influence hepatic progenitor cells (HPCs). HPCs are capable of self-renewal and differentiate into hepatocytes and cholangiocytes; however, HPCs are normally quiescent and are rare in adults. After sustained liver damage, a ductular reaction occurs, and the number of HPCs is substantially increased. Here, we administered five broad-spectrum antibiotics for 14 days to deplete the gut microbiomes of male C57BL/6 mice, and we measured the plasma aminotransferases and other biochemical indices. The expression levels of two HPC markers, SRY-related high mobility group-box gene 9 (Sox9) and cytokeratin (CK), were also measured. The plasma aminotransferase activities were not affected, but the triglyceride, lactate dehydrogenase, low-density lipoprotein, and high-density lipoprotein concentrations were significantly altered; this suggests that liver function is affected by the composition of the gut microbiome. The mRNA expression of Sox9 was significantly higher in the treated mice than it was in the control mice (p < 0.0001), and a substantial expression of Sox9 and CK was observed around the bile ducts. The mRNA expression levels of proinflammatory factors (interleukin [IL]-1ß, IL-6, tumor necrosis factor [TNF]-α, and TNF-like weak inducer of apoptosis [Tweak]) were also significantly higher in the antibiotic-treated mice than the levels in the control mice. These data imply that the depletion of the gut microbiome leads to liver damage, negatively impacts the hepatic metabolism and function, and activates HPCs. However, the underlying mechanisms remain to be determined.


Asunto(s)
Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Hígado/citología , Hígado/fisiología , Células Madre/fisiología , Animales , Antibacterianos/administración & dosificación , Queratinas/análisis , Pruebas de Función Hepática , Masculino , Ratones Endogámicos C57BL , Plasma/enzimología , Factor de Transcripción SOX9/análisis , Transaminasas/sangre
18.
Chin Med J (Engl) ; 131(23): 2852-2859, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30511688

RESUMEN

OBJECTIVE: In previous decades, glaucoma has been primarily attributed to elevated intraocular pressure (IOP), but this has gradually been replaced by the development of optic neuropathy as the central concept of glaucoma in developed countries. However, there still remain strong controversies in the definition of glaucoma in China. In this current review, we are going to discuss these controversies and elaborate on the historical transitions of the definition of glaucoma both in China and developed countries. Furthermore, we will briefly describe the "ocular-cranial pressure gradient" theory and discuss the relationship between glaucoma and degenerative diseases of the central nervous system (CNS) in order to show the complex pathogenesis of glaucoma and the importance for the modification to the definition of glaucoma. DATA SOURCES: We performed a comprehensive search in both PubMed and SinoMed using the following keywords: (a) "primary glaucoma" and "guideline," (b) "ocular-cranial pressure gradient," and (c) "glaucoma," "Alzheimer's disease," and "Parkinson's disease." The literature search included the related articles with no restrictions on publication date. STUDY SELECTION: The primary references were Chinese and English articles including (a) original guidelines and expert consensuses of primary glaucoma, (b) reviews focusing on the differences between various versions of these guidelines and consensuses, and (c) papers about ocular-cranial pressure gradient theory and the relationship between glaucoma and CNS degenerative diseases. RESULTS: The definitions and classifications of both primary open-angle glaucoma and primary angle-closure glaucoma differ between Chinese glaucoma consensuses and international primary glaucoma guidelines. Chinese definitions and classifications put more emphasis on the IOP, while international guidelines put more emphasis on the presence of optic neuropathy. The ocular-cranial pressure gradient theory and the research on the relationship between glaucoma and CNS degenerative diseases have provided new directions for exploring the pathogenesis of glaucoma. CONCLUSIONS: As regards the definition and classification of primary glaucoma, we find that there are still some discrepancies between Chinese expert consensuses and international guidelines. Glaucoma is a disease with complex etiologies, while its common characteristic is a specific optic neuropathy. The current definition and understanding of glaucoma is an ongoing and evolving process, reflecting our latest available evidence on its pathogenesis. Chinese ophthalmology community may need to update our guidelines, accommodating these latest developments.


Asunto(s)
Glaucoma/diagnóstico , China , Glaucoma/fisiopatología , Glaucoma de Ángulo Cerrado/diagnóstico , Glaucoma de Ángulo Cerrado/fisiopatología , Glaucoma de Ángulo Abierto/diagnóstico , Glaucoma de Ángulo Abierto/fisiopatología , Humanos , Presión Intraocular/fisiología , Oftalmología/métodos
19.
Exp Ther Med ; 15(5): 4491-4497, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29725384

RESUMEN

The present study assessed changes in carotid plaque neovascularization following long-term atorvastatin therapy (20 mg/day) using contrast-enhanced ultrasonography (CEUS). In this prospective case series, seven males (mean age, 68±9 years) and three females (mean age, 67±10 years) with a total of 13 carotid plaques underwent standard ultrasonography and CEUS at baseline, as well as after 1 and 2 years of atorvastatin treatment. The same plaques were then examined using real-time CEUS. The results of the enhanced intensity of plaque neovascularization at baseline were compared with results obtained during follow-up to examine the effects of long-term atorvastatin therapy. Standard ultrasonography revealed that 7 of the 13 carotid plaques were uniformly echolucent, whereas 6 carotid plaques were predominantly echolucent. CEUS revealed an enhanced intensity of 10.5±2.1 decibels (dB) prior to treatment, which decreased significantly to 7.3±2.6 dB following 2 years atorvastatin therapy (P<0.001). The ratio of enhanced intensity in the carotid artery lumen to that in the plaque was 3.10±1.10 at baseline and this value significantly increased to 4.96±2.98 following treatment for 2 years (P<0.001). The current pilot study therefore indicates that two-year atorvastatin therapy (20 mg/day) may reduce plaque neovascularization in the Chinese population.

20.
Biochem Cell Biol ; 94(5): 491-497, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27701905

RESUMEN

OBJECTIVE: To investigate the role of angiopoietin-2 (Ang-2) in tumor necrosis factor-α (TNF-α) induced apoptosis of alveolar epithelium cells (AECs). METHODS: TNF-α was used to induce human alveolar epithelial HPAEpiC cells, and Ang-2 siRNA vector was transfected to the HPAEpiC cells. RT-PCR and Western blot were used. TUNEL staining was applied to observe apoptosis, and annexin V-FITC-PI staining was used to calculate apoptosis rate. RESULTS: mRNA and protein expressions of Ang-2, activated Bax, and cleaved caspase-3 in HPAEpiC cells were up-regulated, but the expression level of Bcl-2 decreased (P < 0.05). After transfection of Ang-2 siRNA, mRNA and protein expressions of Ang-2, activated Bax, and cleaved caspase-3 in HPAEpiC cells were down-regulated, but the expression level of Bcl-2 increased (P < 0.05). The number of apoptotic cells increased after TNF-α treatment; however, the number decreased after Ang-2 siRNA transfection. Annexin V-FITC-PI staining verified that the total number of apoptotic cells was elevated with TNF-α treatment, but declined after transfection of Ang-2 siRNA. CONCLUSIONS: The expression level of Ang-2 increased during TNF-α-induced apoptosis. Inhibiting Ang-2 expression may suppress the early stages of cell apoptosis and the degree of TNF-α-induced apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...