Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586674

RESUMEN

Abnormal angiogenesis and regression of the diseased retinal vasculature are key processes associated with ischemic retinopathies, but the underlying mechanisms that regulate vascular remodeling remain poorly understood. Here, we confirmed the specific expression of semaphorin 3G (Sema3G) in retinal endothelial cells (ECs), which was required for vascular remodeling and the amelioration of ischemic retinopathy. We found that Sema3G was elevated in the vitreous fluid of patients with proliferative diabetic retinopathy (PDR) and in the neovascularization regression phase of oxygen-induced retinopathy (OIR). Endothelial-specific Sema3G knockout mice exhibited decreased vessel density and excessive matrix deposition in the retinal vasculature. Moreover, loss of Sema3G aggravated pathological angiogenesis in mice with OIR. Mechanistically, we demonstrated that HIF-2α directly regulated Sema3G transcription in ECs under hypoxia. Sema3G coordinated the functional interaction between ß-catenin and VE-cadherin by increasing ß-catenin stability in the endothelium through the neuropilin-2 (Nrp2)/PlexinD1 receptor. Furthermore, Sema3G supplementation enhanced healthy vascular network formation and promoted diseased vasculature regression during blood vessel remodeling. Overall, we deciphered the endothelium-derived Sema3G-dependent events involved in modulating physiological vascular remodeling and regression of pathological blood vessels for reparative vascular regeneration. Our findings shed light on the protective effect of Sema3G in ischemic retinopathies.


Asunto(s)
Endotelio Vascular/metabolismo , Isquemia/metabolismo , Enfermedades de la Retina/metabolismo , Vasos Retinianos/metabolismo , Semaforinas/metabolismo , Remodelación Vascular , beta Catenina/metabolismo , Animales , Endotelio Vascular/patología , Femenino , Humanos , Isquemia/genética , Isquemia/patología , Masculino , Ratones , Ratones Transgénicos , Enfermedades de la Retina/genética , Enfermedades de la Retina/patología , Vasos Retinianos/patología , Semaforinas/genética , beta Catenina/genética
2.
Theranostics ; 10(24): 10993-11012, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042266

RESUMEN

CRISPR/Cas-based mRNA imaging has been developed to labeling of high-abundance mRNAs. A lack of non-genetically encoded mRNA-tagged imaging tools has limited our ability to explore the functional distributions of endogenous low-abundance mRNAs in cells. Here, we developed a CRISPR-Sunspot method based on the SunTag signal amplification system that allows efficient imaging of low-abundance mRNAs with CRISPR/Cas9. Methods: We created a stable TRE3G-dCas9-EGFP cell line and generated an Inducible dCas9-EGFP imaging system for assessment of two factors, sgRNA and dCas9, which influence imaging quality. Based on SunTag system, we established a CRISPR-Sunspot imaging system for amplifying signals from single-molecule mRNA in live cells. CRISPR-Sunspot was used to track co-localization of Camk2a mRNA with regulatory protein Xlr3b in neurons. CRISPR-Sunspot combined with CRISPRa was used to determine elevated mRNA molecules. Results: Our results showed that manipulating the expression of fluorescent proteins and sgRNA increased the efficiency of RNA imaging in cells. CRISPR-Sunspot could target endogenous mRNAs in the cytoplasm and amplified signals from single-molecule mRNA. Furthermore, CRISPR-Sunspot was also applied to visualize mRNA distributions with its regulating proteins in neurons. CRISPR-Sunspot detected the co-localization of Camk2a mRNA with overexpressed Xlr3b proteins in the neuronal dendrites. Moreover, we also manipulated CRISPR-Sunspot to detect transcriptional activation of target gene such as HBG1 in live cells. Conclusion: Our findings suggest that CRISPR-Sunspot is a novel applicable imaging tool for visualizing the distributions of low-abundance mRNAs in cells. This study provides a novel strategy to unravel the molecular mechanisms of diseases caused by aberrant mRNA molecules.


Asunto(s)
Sistemas CRISPR-Cas/genética , Microscopía Intravital/métodos , Imagen Molecular/métodos , ARN Mensajero/metabolismo , Imagen Individual de Molécula/métodos , Animales , Línea Celular Tumoral , Embrión de Mamíferos , Femenino , Hemoglobina Fetal/genética , Células HEK293 , Humanos , Microscopía Confocal/métodos , Neuronas , Cultivo Primario de Células , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , Ratas , Activación Transcripcional , Transfección
3.
J Exp Med ; 217(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31699822

RESUMEN

Blood-brain barrier (BBB) dysfunction has been suggested to play an important role in epilepsy. However, the mechanism mediating the transition from cerebrovascular damage to epilepsy remains unknown. Here, we report that endothelial cyclin-dependent kinase 5 (CDK5) is a central regulator of neuronal excitability. Endothelial-specific Cdk5 knockout led to spontaneous seizures in mice. Knockout mice showed increased endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1) expression, decreased astrocytic glutamate reuptake through the glutamate transporter 1 (GLT1), and increased glutamate synaptic function. Ceftriaxone restored astrocytic GLT1 function and inhibited seizures in endothelial Cdk5-deficient mice, and these effects were also reversed after silencing Cxcl1 in endothelial cells and its receptor chemokine (C-X-C motif) receptor 2 (Cxcr2) in astrocytes, respectively, in the CA1 by AAV transfection. These results reveal a previously unknown link between cerebrovascular factors and epileptogenesis and provide a rationale for targeting endothelial signaling as a potential treatment for epilepsy.


Asunto(s)
Quimiocina CXCL1/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Células Endoteliales/metabolismo , Epilepsia/metabolismo , Gliosis/metabolismo , Receptores de Interleucina-8B/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Células Endoteliales/patología , Epilepsia/patología , Gliosis/patología , Ácido Glutámico/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Convulsiones/metabolismo , Convulsiones/patología , Transducción de Señal/fisiología
4.
Theranostics ; 9(20): 5937-5955, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534530

RESUMEN

Prolonged occlusion of multiple microvessels causes microvascular injury. G protein-coupled receptor 124 (GPR124) has been reported to be required for maintaining central nervous system (CNS) angiogenesis and blood-brain barrier integrity. However, the molecular mechanisms by which GPR124 regulates pericytes during ischemia have remained elusive. Methods: A microsphere embolism-induced ischemia model was used to evaluate the expression of GPR124 following microsphere embolism. Immunocytochemistry and stochastic optical reconstruction microscopy imaging were used to assess the expression and distribution of GPR124 in human brain vascular pericytes (HBVPs) and after the treatment with 3-morpholino-sydnonimine (SIN-1) or oxygen-glucose deprivation (OGD). The effect of GPR124 knockdown or overexpression on HBVP migration was analyzed in vitro using wound healing assays and a microfluidic device. GPR124 loss-of-function studies were performed in HBVPs and HEK293 cells using CRISPR-Cas9-mediated gene deletion. Time-lapse imaging was used to assess dynamic changes in the formation of filopodia in an individual cell. Finally, to explore the functional domains required for GPR124 activity, deletion mutants were constructed for each of the N-terminal domains. Results: GPR124 expression was increased in pericytes following microsphere embolism. Morphological analysis showed localization of GPR124 to focal adhesions where GPR124 bound directly to the actin binding protein vinculin and upregulated Cdc42. SIN-1 or OGD treatment redistributed GPR124 to the leading edges of HBVPs where GPR124 signaling was required for pericyte filopodia formation and directional migration. Partial deletion of GPR124 domains decreased SIN-1-induced filopodia formation and cell migration. Conclusion: Taken together, our results provide the first evidence for a role of GPR124 in pericyte migration under ischemic conditions and suggest that GPR124 was essential for Cdc42 activation and filopodia formation.


Asunto(s)
Isquemia Encefálica/metabolismo , Polaridad Celular/fisiología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Pericitos/citología , Pericitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Western Blotting , Línea Celular , Polaridad Celular/genética , Adhesiones Focales/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Lentivirus/genética , Masculino , Ratones , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
5.
Mol Psychiatry ; 24(10): 1461-1477, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30886335

RESUMEN

Anxiety disorders are the most prevalent psychiatric disorders, but their pathogenic mechanism remains poorly understood. Here, we report that transmembrane protein 74 (TMEM74), which contains two putative transmembrane domains and exhibits high levels of mRNA in the brain, is closely associated with the pathogenesis of anxiety disorders. TMEM74 was decreased in the serum of patients with anxiety and the basolateral amygdaloid nucleus (BLA) in chronic stress mice. Furthermore, genetic deletion of Tmem74 or selective knockdown of Tmem74 in BLA pyramidal neurons resulted in anxiety-like behaviors in mice. Whole-cell recordings in BLA pyramidal neurons revealed lower hyperpolarization-activated cation current (Ih) and greater input resistance and excitability in Tmem74-/- neurons than in wild-type neurons. Accordingly, surface expression of hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels was also lower in the BLA of Tmem74-/- mice. The Ih current blocker ZD7288 mimicked these effects in BLA pyramidal neurons in wild-type mice but not in Tmem74-/- mice. Consistent with the improvement in anxiety-like behaviors, Tmem74 overexpression restored HCN1 channel trafficking and pyramidal neuron excitability in the BLA of Tmem74-/- and chronic stress mice. Mechanistically, we demonstrate that interactions between Tmem74 and HCN1 are physiologically relevant and that transmembrane domain 1 (TM1) is essential for the cellular membrane localization of Tmem74 to enhance Ih. Together, our findings suggest that Tmem74 coupling with HCN1 acts as a critical component in the pathophysiology of anxiety and is a potential target for new treatments of anxiety disorders.


Asunto(s)
Ansiedad/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Ansiedad/genética , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/metabolismo , Complejo Nuclear Basolateral/metabolismo , Encéfalo/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Hipocampo/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/genética , Transporte de Proteínas , Células Piramidales/metabolismo
6.
Neuron ; 101(5): 920-937.e13, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30685224

RESUMEN

The proper interactions between blood vessels and neurons are critical for maintaining the strength of neural circuits and cognitive function. However, the precise molecular events underlying these interactions remain largely unknown. Here, we report that the selective knockout of semaphorin 3G (Sema3G) in endothelial cells impaired hippocampal-dependent memory and reduced dendritic spine density in CA1 neurons in mice; these effects were reversed after restoration of Sema3G levels in the hippocampus by AAV transfection. We further show that Sema3G increased excitatory synapse density via neuropilin-2/PlexinA4 signaling and through activation of Rac1. These results provide the first evidence that, in the central nervous system, endothelial Sema3G serves as a vascular-derived synaptic organizer that regulates synaptic plasticity and hippocampal-dependent memory. Our findings highlight the role of vascular endothelial cells in regulating cognitive function through intercellular communication with neurons in the hippocampus.


Asunto(s)
Endotelio Vascular/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Plasticidad Neuronal , Semaforinas/metabolismo , Animales , Células Cultivadas , Femenino , Células HEK293 , Hipocampo/fisiología , Humanos , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-2/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semaforinas/genética , Sinapsis/metabolismo , Sinapsis/fisiología
7.
Cereb Cortex ; 28(7): 2391-2404, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28591834

RESUMEN

Grb2-associated-binding protein 1 (Gab1) is a docking/scaffolding molecule known to play an important role in cell growth and survival. Here, we report that Gab1 is decreased in cholinergic neurons in Alzheimer's disease (AD) patients and in a mouse model of AD. In mice, selective ablation of Gab1 in cholinergic neurons in the medial septum impaired learning and memory and hippocampal long-term potentiation. Gab1 ablation also inhibited SK channels, leading to an increase in firing in septal cholinergic neurons. Gab1 overexpression, on the other hand, improved cognitive function and restored hippocampal CaMKII autorphosphorylation in AD mice. These results suggest that Gab1 plays an important role in the pathophysiology of AD and may represent a novel therapeutic target for diseases involving cholinergic dysfunction.


Asunto(s)
Enfermedad de Alzheimer/patología , Corteza Cerebral/patología , Neuronas Colinérgicas/fisiología , Cognición/fisiología , Regulación de la Expresión Génica/genética , Fosfoproteínas/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Proteínas Adaptadoras Transductoras de Señales , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mutación/genética , Fosfoproteínas/genética , Presenilina-1/genética , Presenilina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...