Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 253: 121267, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350192

RESUMEN

Water/wastewater ((waste)water) disinfection, as a critical process during drinking water or wastewater treatment, can simultaneously inactivate pathogens and remove emerging organic contaminants. Due to fluctuations of (waste)water quantity and quality during the disinfection process, conventional disinfection models cannot handle intricate nonlinear situations and provide immediate responses. Artificial intelligence (AI) techniques, which can capture complex variations and accurately predict/adjust outputs on time, exhibit excellent performance for (waste)water disinfection. In this review, AI application data within the disinfection domain were searched and analyzed using CiteSpace. Then, the application of AI in the (waste)water disinfection process was comprehensively reviewed, and in addition to conventional disinfection processes, novel disinfection processes were also examined. Then, the application of AI in disinfection by-products (DBPs) formation control and disinfection residues prediction was discussed, and unregulated DBPs were also examined. Current studies have suggested that among AI techniques, fuzzy logic-based neuro systems exhibit superior control performance in (waste)water disinfection, while single AI technology is insufficient to support their applications in full-scale (waste)water treatment plants. Thus, attention should be paid to the development of hybrid AI technologies, which can give full play to the characteristics of different AI technologies and achieve a more refined effectiveness. This review provides comprehensive information for an in-depth understanding of AI application in (waste)water disinfection and reducing undesirable risks caused by disinfection processes.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Aguas Residuales , Inteligencia Artificial , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Desinfectantes/análisis , Halogenación
2.
J Hazard Mater ; 463: 132868, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37944231

RESUMEN

Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.


Asunto(s)
Desinfectantes , Purificación del Agua , Ácido Peracético/farmacología , Desinfección , Aguas Residuales , Bacterias/genética , Antibacterianos , Desinfectantes/farmacología
3.
Water Res ; 226: 119292, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323215

RESUMEN

In this study, four typical recycled agricultural wastes (AWs), corn cob, wheat straw, sawdust and walnut shells (named AW1, AW2, AW3 and AW4, respectively), were selected as external solid carbon sources to enhance the removal of nitrogen in wastewater, and specifically, the driving mechanism was thoroughly investigated. The leaching experiments showed that the dissolved organic carbon (DOC) release capacity followed the order of AW1>AW2>AW3>AW4, ranging from 6.21 to 31.92 mg/g. DOC released from AWs mainly consisted of protein-like substances, fulvic acid-like substances and humic-like substances. AW1 and AW2 achieved comparable NOx--N removal performance with a liquid carbon source of sodium acetate (SA) during the long-term denitrification experiments (>94.2%) but not for the other two AWs (only 16.8%-38.1%). Denitrification performance relied on DOC released from AWs at the beginning, while the enrichment of the functional CAZymes (including glycoside hydrolase and carbohydrate esterase) involved in cellulose and hemicellulose decomposition of AWs and functional genes (GAPDH, gap 2, PK, etc.) related to glycolysis were the inner driving force, which guaranteed the continuous supply of electron donors for denitrification. The relatively high abundances of napAB, narGHI, nirKS, norBC and nosZ, which encode nitrate reductase, nitrite reductase, NO reductase and N2O reductase, assured the better denitrification performance in the SA, AW1 and AW2 groups. In addition to denitrification-related functional genes, the relative abundances of nirBD and nrfAH associated with dissimilatory nitrate reduction were much higher in AW1 and AW2 groups than in SA group, implying that the nitrogen removal mechanism should be different in liquid carbon source and AW-based solid carbon source systems. In addition, GLU, gltBD and glnA, which participate in ammonia assimilation were the highest in the AW2 group, resulting in a large amount of organic nitrogen accumulation (peak concentration of approximately 24.5 mg/L), and this finally ruled it out as an alternative external carbon source. The abovementioned microbial mechanism was verified based on the correlation analysis of nutrient removal and functional genes combined with host bacterial analysis. Our study can provide valuable information for understanding the mechanism of using AWs as alternative external carbon sources to promote the removal of nitrogen in wastewater.


Asunto(s)
Nitrógeno , Aguas Residuales , Carbono , Desnitrificación , Nitratos , Reactores Biológicos
4.
J Hazard Mater ; 413: 125288, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33588334

RESUMEN

A novel ternary recyclable Fe3O4/graphene/sulfur-doped g-C3N4 (Fe3O4/GE/SCN) composite catalyst was synthesized and adopted in a visible-light driven catalytic system for the degradation of ranitidine, which is an important precursor of the emerging disinfection by-product of N-nitrosodimethylamine (NDMA). The addition of GE and Fe3O4 significantly improved the interface charge transfer of SCN, increased the light collection efficiency and decreased the photogenerated charge recombination efficiency. Considering both the ranitidine removal efficiency and catalyst recovery, the Fe3O4 mass fraction of 20% (20%-Fe3O4/GE/SCN) was recommended. Ranitidine (≤2 mg/L) was completely removed in 60 min under the conditions of an initial pH of 7.0 and a 20%-Fe3O4/GE/SCN dose of 1.0 g/L, and its degradation fitted well with the pseudo first-order kinetics model. Electron paramagnetic resonance analysis and trapping experiments confirmed that ·O2-, ·OH and h+ participated in the degradation of ranitidine. Ranitidine was removed through the pathways of demethylation and hydroxylation based on the analysis of the detected degradation intermediates, and 57.3% of the NDMA formation potential (FP) was reduced after the reaction. The visible-light driven 20%-Fe3O4/GE/SCN catalytic technology is a promising method not only for the control of NDMA FP but also the catalyst could be recovered and reused.


Asunto(s)
Dimetilnitrosamina , Grafito , Catálisis , Ranitidina , Azufre
5.
J Hazard Mater ; 406: 124328, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33144012

RESUMEN

In this study, peroxydisulfate (PDS) was activated by synthesized sulfur-doped g-C3N4 (SCN) under visible-light irradiation and was adopted to enhance the removal of spiramycin, which is an important precursor of N-nitrosodimethylamine (NDMA). Specifically, 95.4% of spiramycin (≤10 mg/L) was removed in 60 min under the conditions of an initial value of pH of 7.0, an SCN dose of 1.0 g/L, and a PDS dose of 200 mg/L, and its degradation fitted well with the pseudo first-order kinetics. Electron paramagnetic resonance analysis and trapping experiments confirmed that ·O2- and h+ were the main oxidizers for the degradation of spiramycin, and ·SO4- and ·OH also participated in the removal of spiramycin. The removal of spiramycin in the PDS/SCN visible-light catalytic system occurred through three different pathways: aldehyde oxidation, cleavage of C-O bond and demethylation. Notably, 61.4% of NDMA formation potential (FP) was reduced after the reaction. The SCN catalyst was stable and its catalytic performance was excellent in the PDS/SCN system, as the spiramycin removal efficiency decreased only slightly from 95.4% to 87.3% after being reused three times. Therefore, our study not only provides an alternative method for removing spiramycin but can also can significantly reduce NDMA FP.


Asunto(s)
Espiramicina , Catálisis , Dimetilnitrosamina , Luz , Azufre
6.
Chemosphere ; 223: 12-27, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30763912

RESUMEN

In recent years, with the continuous development of industry and agriculture, the content of organic pollutants in the environment has been increasing, which has caused serious pollution to the environment. Adsorption has proven to be an effective and economically viable method of removing organic contaminants. Since biochar has many advantages such as various types of raw materials, low cost, and recyclability, it can achieve the effect of turning waste into treasure when used for environmental treatment. This paper summarizes the source and production of biochar, points out its research status in the removal of organic pollutants, expounds its adsorption mechanism on organic pollutants, introduces the relevant adsorption parameters, summarizes its regeneration methods, studies its application of engineering, and finally analyses of benefits and describes the development prospects.


Asunto(s)
Carbón Orgánico , Contaminantes Ambientales/aislamiento & purificación , Adsorción , Compuestos Orgánicos/aislamiento & purificación , Reciclaje
7.
Chemosphere ; 215: 163-172, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30316158

RESUMEN

Spent coffee grounds (SCG-1 and SCG-2) were used to study the adsorption of tetracycline (TC) antibiotics and the effects of adsorption time, initial pH, amount of adsorbent and ionic strength were detected. The TC adsorption isotherm on SCG-1 was compared with SCG-2. The results showed that the removal efficiencies of TC (50 mg/L) of SCG-1 and SCG-2 were 83.1% and 97.2%, respectively, shake for 2 h. The probability of adsorption is high and balances in about 20 min. The estimate of parameters got for TC from the Langmuir isotherm saturated adsorption quantity and adsorption balance constant were 64.89 mg/g, 0.0557 L/mg, respectively for SCG-1 and 123.46 mg/g, 0.4735 L/mg, respectively for SCG-2. The adsorption mechanism might be a π-π interaction that occurs in the interface by hydrogen bonding and the between the TC molecular and the SCGs. At last, we found that SCG has a high adsorption size for TC.


Asunto(s)
Antibacterianos/aislamiento & purificación , Café/química , Tetraciclina/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Antibacterianos/química , Tetraciclina/química , Contaminantes Químicos del Agua/química
8.
Chemosphere ; 211: 235-253, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30077103

RESUMEN

In recent years, various industrial activities have caused serious pollution to the environment. Due to the low operating costs and high flexibility, adsorption is considered as one of the most effective technologies for pollutant management. Agricultural waste has loose and porous structures, and contains functional groups such as the carboxyl group and hydroxyl group, so it can be invoked as biological adsorption material. Agricultural waste gets the advantages of a wide range of sources, low cost, and renewable. It has a good prospect for the comprehensive utilization of resources when used for environmental pollution control. This article summarized the current research status of agricultural waste in adsorbing pollutants, which pointed out the influencing factors of adsorption, expounded the adsorption mechanism of biological adsorption and introduced the related parameters of adsorption, proposed the application of adsorbents in engineering including adsorption in liquid and gas phases, at the same time it gave the future development prospect of agricultural waste as adsorbent.


Asunto(s)
Agricultura/métodos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...