Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(43): e2303344, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37376809

RESUMEN

Developing solid-state electrolyte with sufficient ionic conduction and flexible-intimate interface is vital to advance fast-charging solid-state lithium batteries. Solid polymer electrolyte yields the promise of interfacial compatibility, yet its critical bottleneck is how to simultaneously achieve high ionic conductivity and lithium-ion transference number. Herein, single-ion conducting network polymer electrolyte (SICNP) enabling fast charging is proposed to positively realize fast lithium-ion locomotion with both high ionic conductivity of 1.1 × 10-3 S cm-1 and lithium-ion transference number of 0.92 at room temperature. Experimental characterization and theoretical simulations demonstrate that the construction of polymer network structure for single-ion conductor not only facilitates fast hopping of lithium ions for boosting ionic kinetics, but also enables a high dissociation level of the negative charge for lithium-ion transference number close to unity. As a result, the solid-state lithium batteries constructed by coupling SICNP with lithium anodes and various cathodes (e.g., LiFePO4 , sulfur, and LiCoO2 ) display impressive high-rate cycling performance (e.g., 95% capacity retention at 5 C for 1000 cycles in LiFePO4 |SICNP|lithium cell) and fast-charging capability (e.g., being charged within 6 min and discharged over than 180 min in LiCoO2 |SICNP|lithium cell). Our study provides a prospective direction for solid-state electrolyte that meets the lithium-ion dynamics for practical fast-charging solid-state lithium batteries.

2.
Chem Biodivers ; 20(3): e202201180, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36785981

RESUMEN

Two new azaphilones, penimultiones A and B, together with seven known analogs were isolated from the culture of Penicillium multicolor LZUC-S2. Their structures were elucidated by detailed spectroscopic data analysis and chemical transformation. Penimultiones A and B belong to a rare class of azaphilones possessing a 1,3-dioxolane moiety. In addition, all compounds were evaluated for their antibacterial activity against five clinically bacterial strains in vitro, and three compounds showed potent antibacterial activity with minimum inhibitory concentration (MIC) values ranging from 12.5 to 50.0 µg/mL.


Asunto(s)
Penicillium , Estructura Molecular , Penicillium/química , Antibacterianos/química , Hongos , Pruebas de Sensibilidad Microbiana
3.
Polymers (Basel) ; 12(6)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604792

RESUMEN

Graphene oxide (GO) have been reported as adsorbent materials, because its surface contains a large number of oxygen-containing groups, which provide masses of active sites. Nevertheless, it is difficult to separate GO from aqueous solution by conventional means after the end of the adsorption process. Therefore, ethylene diamine-reduced graphene oxide/anionic polyacrylamide (E-RGO/APAM), with a large quantity of adsorption sites and strong flocculation was prepared in this study. The composite E-RGO/APAM was characterized by Fourier transform infrared (FTIR), laser Raman spectrometer (IR), scanning electron microscope (SEM). The obtained results indicated that amino groups were successfully introduced into GO. Particle size test showed that the particle size of E-RGO/APAM is up to three micrometers, which can be separated from the water by conventional means, such as filtration and centrifugation, to avoid secondary pollution. The efficiency of E-RGO/APAM for removing Pb(II) was tested. The results showed that the process of adsorption of Pb(II) by E-RGO/APAM can be fitted by pseudo second order kinetic equation, indicating that the adsorption rate of the adsorbent depends on the chemisorption process, and the theoretical maximum adsorption amount of E-RGO/APAM is 400.8 mg/g. Based on these results, it can be stated that E-RGO/APAM is effective in the removal of Pb(II) from aqueous solutions, and provides a new method for the removal of heavy metal ions from industrial wastewater.

4.
Micromachines (Basel) ; 10(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817399

RESUMEN

The modular-based multi-organ-on-a-chip enables more stable and flexible configuration to better mimic the complex biological phenomena for versatile biomedical applications. However, the existing magnetic-based interconnection modes are mainly realized by directly embedding and/or fixing magnets into the modular microfluidic devices for single use only, which will inevitably increase the complexity and cost during the manufacturing process. Here, we present a novel design of a reusable standardized universal interface module (RSUIM), which is highly suitable for generic organ-on-chip applications and their integration into multi-organ systems. Both pasting-based and clamping-based interconnection modes are developed in a plug-and-play manner without fluidic leakage. Furthermore, due to the flexibility of the modular design, it is simple to integrate multiple assembled modular devices through parallel configuration into a high throughput platform. To test its effectiveness, experiments on the construction of both the microvascular network and vascularized tumor model are performed by using the integration of the generic vascularized organ-on-a-chip module and pasting-based RSUIM, and their quantitative analysis results on the reproducibility and anti-cancer drug screening validation are further performed. We believe that this RSUIM design will become a standard and critical accessory for a broad range of organ-on-a-chip applications and is easy for commercialization with low cost.

5.
Zhongguo Zhen Jiu ; 39(4): 403-8, 2019 Apr 12.
Artículo en Chino | MEDLINE | ID: mdl-30957452

RESUMEN

OBJECTIVE: To explore the effects of cluster needling at the scalp points on the expression of choline acetyl transferase (ChAT) and choline cholinesterase (AchE). METHODS: A total of 60 Wistar rats were randomized into a sham-operation group, a model group, a medication group and a cluster needling group, 15 rats in each one. In the model group, the medication group and the cluster needling group, the models of Alzheimer's disease (AD) were established by the orienteering injection with Aß1-42 in the bilateral hippocampal CA1 in the rats. In the sham-operation group, the distilled water was injected in bilateral hippocampus of rats. In the medication group, the lavage with aricept was adopted for the basic treatment, once a day, for 4 weeks consecutively. In the cluster needling group, on the base of the treatment as the medication group, the cluster needling at the scalp points was adopted, once a day, 6 times a week, for 4 weeks totally. In the sham-operation group and the model group, the normal feeding was provided. After intervention, the learning and memory ability was measured with Morris water maze in the rats of each group. The changes in the hippocampal gross structure were observed with HE staining. The changes in the positive expressions of hippocampal ChAT and AchE were determined with the immunohistochemical method. RESULTS: Compared with the sham-operation group, the escape latency was prolonged and the percentage of the second quadrant and the frequency of platform leaping were reduced in the rats of the model group (all P<0.01). Compared with the model group, the escape latency was shortened and the percentage of the second quadrant and the frequency of platform leaping were increased in the rats of the cluster needling group and the medication group (P<0.05, P<0.01). Compared with the medication group, the escape latency was shortened and the percentage of the second quadrant and the frequency of platform leaping were increased in the rats of the cluster needling group (all P<0.05). Compared with the sham-operation group, the expression of ChAT was decreased and that of AchE increased in the model group (both P<0.01). Compared with the model group, the difference was not significant in ChAT expression (P>0.05) and the expression of AchE was reduced (P<0.05) in the medication group; the expression of ChAT was increased (P<0.05) and that of AchE decreased (P<0.01) in the cluster needling group. Compared with the medication group, the expression of ChAT was increased and that of AchE decreased in the cluster needling group (both P<0.05). CONCLUSION: The effect mechanism of cluster needling at the scalp points on AD could be related to the up-regulation of ChAT expression and down-regulation of AchE expression in the hippocampus. The combined treatment with the cluster needling and aricept achieves the better therapeutic effect on AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Colina O-Acetiltransferasa , Hipocampo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Cuero Cabelludo
6.
Micromachines (Basel) ; 9(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30424426

RESUMEN

The microvasculature plays a critical role in human physiology and is closely associated to various human diseases. By combining advanced microfluidic-based techniques, the engineered 3D microvascular network model provides a precise and reproducible platform to study the microvasculature in vitro, which is an essential and primary component to engineer organ-on-chips and achieve greater biological relevance. In this review, we discuss current strategies to engineer microvessels in vitro, which can be broadly classified into endothelial cell lining-based methods, vasculogenesis and angiogenesis-based methods, and hybrid methods. By closely simulating relevant factors found in vivo such as biomechanical, biochemical, and biological microenvironment, it is possible to create more accurate organ-specific models, including both healthy and pathological vascularized microtissue with their respective vascular barrier properties. We further discuss the integration of tumor cells/spheroids into the engineered microvascular to model the vascularized microtumor tissue, and their potential application in the study of cancer metastasis and anti-cancer drug screening. Finally, we conclude with our commentaries on current progress and future perspective of on-chip vascularization techniques for fundamental and clinical/translational research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...