Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Anat ; 252: 152183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926401

RESUMEN

BACKGROUND: Hypertension is a life-threatening disease mainly featured as vascular endothelial dysfunction. This study aims to explore the regulatory role of murine double minute 2 (MDM2) in hypertension and vascular damage. METHODS: Mice were infused with angiotensin II (AngII) to establish a hypertension mouse model in vivo and AngII-stimulated HUVECs were constructed to simulate the damage of vascular endothelial cells in hypertension in vitro. The plasmids targeting to MDM2 was injected to mice or transfected to HUVECs. qRT-PCR and western blot were performed to detect corresponding gene expression in mice aorta. Blood pressure was measured. H&E and Masson staining were conducted to evaluate histological changes of aorta. Responses to the acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in aorta. ZO-1 expression and cell apoptosis were detected by immunofluorescence and TUNEL, respectively. Network formation ability was determined employing a tube formation. RESULTS: MDM2 was upregulated in hypertensive mice. Knockdown of MDM2 inhibited AngII-induced high BP, histological damage, vascular relaxation to Ach, and promoted the levels of p-eNOS and ZO-1 in the aorta in hypertensive mice. MDM2 knockdown inactivated Notch1 signaling and NLRP3 inflammasome, while the inhibitory effect of MDM2 knockdown on NLRP3 inflammasome activation was partly restored by the activation of Notch1. Furthermore, knockdown of MDM2 relieved AngII-induced endothelial dysfunction in HUVECs, as well as suppressing AngII-promoted cell apoptosis. Whereas, the impacts generated by MDM2 knockdown were partly weakened by the activation of Notch1 signaling or NLRP3 inflammasome. CONCLUSION: In summary, knockdown of MDM2 can attenuate vascular endothelial dysfunction in hypertension, which may be achieved through inhibiting the activation of Notch1 and NLRP3 inflammasome.


Asunto(s)
Hipertensión , Inflamasomas , Animales , Ratones , Angiotensina II , Aorta , Células Endoteliales , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Inflamasomas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
2.
ACS Appl Mater Interfaces ; 11(2): 2535-2542, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30582683

RESUMEN

Anodic oxidation is a promising surface modification technique for the manufacture of SiC wafers owing to its high oxidation rate. It is also possible to fabricate porous SiC by anodic oxidation and etching owing to the material properties of SiC. In this study, the anodic oxidation of a 4H-SiC(0001) surface was investigated by performing repeated anodic oxidation and hydrofluoric acid etching on a 4H-SiC(0001) surface, during which the formation of porous SiC was observed and studied. Anodic oxidation is very effective for removing the surface damage formed by mechanical polishing, and the surface after removing the surface damage can be oxidized uniformly and has a higher oxidation rate than a surface newly finished by chemical mechanical polishing (CMP). We proposed a model based on the electrochemical impedance method to explain the difference in the oxidation between an as-CMP-finished surface and an oxidized/etched surface. Porous SiC was obtained in this study, which was due to the anisotropy of the SiC crystal. The structure of the porous SiC was significantly dependent on the etch pits generated at the beginning of anodic oxidation and can be controlled via anodic oxidation parameters. Anodic oxidation and hydrofluoric acid etching cannot remove porous SiC owing to the anisotropic oxidation of the SiC surface and the difficulty of anodizing SiC fibers. This study shows that anodic oxidation is a promising technique for the modification of SiC surfaces and the fabrication of porous SiC.

3.
Sci Rep ; 8(1): 2376, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402967

RESUMEN

In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA