Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 453: 131456, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37088022

RESUMEN

Chromium (Cr) is a toxic heavy metal for both animals and plants. The multifunctional signaling molecule melatonin can confer plant tolerance to heavy metal stress, but the mechanisms remain largely unknown. Here, we unveiled the critical role of the secondary metabolite anthocyanin in melatonin-induced Cr stress tolerance. Excess Cr caused severe phytotoxicity, which was manifested by leaf yellowing, stunted growth, reduced Fv/Fm, and increased accumulation of reactive oxygen species and malondialdehyde in a dose-dependent manner. Interestingly, leaf anthocyanin content increased under Cr stress and was the highest under 100 µM Cr (7.67-fold), while exogenous melatonin further increased anthocyanin accumulation with the highest being with 100 µM melatonin (by 90.72 %). In addition, exogenous melatonin increased endogenous melatonin content and alleviated Cr stress; however, suppression of melatonin accumulation aggravated Cr phytotoxicity and inhibited anthocyanin accumulation by downregulating the transcript levels of key structural genes. Melatonin also reduced the Cr content in roots and leaves. Crucially, suppression of anthocyanin biosynthesis by silencing an anthocyanin biosynthetic gene ANTHOCYANIDIN SYNTHASE (ANS) significantly compromised melatonin-induced anthocyanin accumulation and alleviation of Cr phytotoxicity, suggesting that anthocyanin potentially acts downstream of melatonin and its accumulation is essential for melatonin-induced Cr stress tolerance in tomato plants.


Asunto(s)
Melatonina , Solanum lycopersicum , Melatonina/farmacología , Estrés Oxidativo , Antocianinas , Cromo/toxicidad , Cromo/metabolismo , Antioxidantes/metabolismo
2.
J Hazard Mater ; 443(Pt A): 130212, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36308936

RESUMEN

Pesticide overuse has led to serious global concerns regarding food safety and environmental pollution. Although the reduction of pesticide residue is critical, our knowledge about induced pesticide metabolism in plants remains fragmentary. Melatonin (N-acetyl-5-methoxytryptamine) is an effective stress-relieving agent in both animals and plants, but little is known about the melatonin signaling mechanism and its effect on pesticide metabolism in plants. Here, we found that exogenous melatonin treatment significantly reduced chlorothalonil residue by 41 % but suppression of endogenous melatonin accumulation increased chlorothalonil residue in tomato leaves. Moreover, melatonin increased photosynthesis, Fv/Fm, Calvin cycle enzyme activity, antioxidant enzyme activity, glutathione pool, and RESPIRATORY BURST HOMOLOG1 (RBOH1) expression in tomato leaves. However, the upregulation of RBOH1, CYP724B2, GST1, GST2, GSH and ABC, the increased glutathione concentrations and the activity of detoxification enzymes due to melatonin treatment were all significantly attenuated by the treatment with an NADPH oxidase inhibitor and a ROS scavenger, indicating a clear relationship between the reduction of pesticide residue and induction in detoxifying enzymes and genes upon melatonin treatment in an apoplastic H2O2-dependent manner. These results reveal that melatonin-induced reduction in chlorothalonil residue is mediated by H2O2 signaling in tomato leaves.


Asunto(s)
Melatonina , Residuos de Plaguicidas , Plaguicidas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Residuos de Plaguicidas/metabolismo , Hojas de la Planta/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Plaguicidas/metabolismo
3.
Front Plant Sci ; 13: 1011859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311065

RESUMEN

Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Fo), is a severe soil-borne disease affecting cucumber production worldwide, particularly under monocropping in greenhouses. Silicon (Si) plays an important role in improving the resistance of crops to Fusarium wilt, but the underlying mechanism is largely unclear. Here, an in vitro study showed that 3 mmol·l-1 Si had the best inhibitory effect on the mycelial growth of F. oxysporum in potato dextrose agar (PDA) culture for 7 days. Subsequently, the occurrence of cucumber wilt disease and its mechanisms were investigated upon treatments with exogenous silicon under soil culture. The plant height, stem diameter, root length, and root activity under Si+Fo treatment increased significantly by 39.53%, 94.87%, 74.32%, and 95.11% compared with Fo only. Importantly, the control efficiency of Si+Fo was 69.31% compared with that of Fo treatment. Compared with Fo, the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) significantly increased by 148.92%, 26.47%, and 58.54%, while the contents of H2O2, O 2 · - , and malondialdehyde (MDA) notably decreased by 21.67%, 59.67%, and 38.701%, respectively, in roots of cucumber plants treated with Si + Fo. Compared with Fo treatment, the net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum RuBisCO carboxylation rates (Vcmax), maximum RuBP regeneration rates (Jmax), and activities of ribulose-1,5-bisphosphate carboxylase (RuBisCO), fructose-1,6-bisphosphatase (FBPase), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the expression of FBPA, TPI, SBPase, and FBPase in Si+Fo treatment increased significantly. Furthermore, Si alleviated stomatal closure and enhanced endogenous silicon content compared with only Fo inoculation. The study results suggest that exogenous silicon application improves cucumber resistance to Fusarium wilt by stimulating the antioxidant system, photosynthetic capacity, and stomatal movement in cucumber leaves. This study brings new insights into the potential of Si application in boosting cucumber resistance against Fusarium wilt with a bright prospect for Si use in cucumber production under greenhouse conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...