Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Commun ; 15(1): 3333, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637533

RESUMEN

Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.


Asunto(s)
Pliegue de Proteína , Deficiencia de alfa 1-Antitripsina , Humanos , Chaperonas Moleculares/metabolismo , Proteostasis , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Deficiencia de alfa 1-Antitripsina/genética , Variación Genética
2.
Vet Sci ; 11(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668427

RESUMEN

Probiotics are safe, inexpensive, and effective feed additives, and Clostridium butyricum (CB) has been reported to regulate bone health in addition to having conventional probiotic effects. The bone health of laying hens is closely related to their production performance. Here, we investigated the effects of CB supplementation on the bone health and performance of laying hens. We added CB to the feed of green-shell laying hens, Luhua laying hens, and Hy-line Brown laying hens and examined changes in body weight, feed intake, egg production performance, and egg quality to determine the impact of CB on production performance. The impact of CB on the bones of laying hens was determined by analyzing the bone index, bone bending strength, bone calcium and phosphorus content, and bone mineral density. The study found that CB had little effect on the body weight and feed intake of laying hens. Feed additions of 108 and 109 CFU/kg CB can significantly increase the tibia index and bone mineral density of four-week-old green-shell laying hens. Feed additions of 107 and 108 CFU/kg CB can significantly increase the average egg weight, eggshell weight, and tibia index of 26-week-old Luhua laying hens, but 107 CFU/kg CB will reduce the egg production rate. Adding 108 CFU/kg CB to feed can significantly increase the average egg weight, eggshell weight, and tibia bending strength of 40-week-old Hy-line Brown laying hens. In summary, adding 108 CFU/kg CB is beneficial to the bone and production health of laying hens.

3.
Microorganisms ; 12(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543653

RESUMEN

Salmonella infection causes serious economic losses, threatens food safety, and is one of the most important diseases threatening meat duck farming. The gut microbiome is critical in providing resistance against colonization by exogenous microorganisms. Studying the relationship between Salmonella and gut microbiota can help us better understand the threat of the pathogenic mechanism of Salmonella and provide a more scientific theoretical basis for its prevention and treatment. This study uses Salmonella Typhimurium as the research object and Cherry Valley meat duck as the model with which to study the impact of Salmonella infection on ducks. In this field trial, 2 × 108 CFUs Salmonella Typhimurium were administered to 3-day-old ducks. After infection, duck viscera were collected to detect the colonization of Salmonella, and cecal contents were collected to analyze the changes in gut microbiota. The results show that Salmonella Typhimurium can colonize ducks three days after infection and alter the gut microbiota composition, mainly by increasing the abundance of Ruminococcaceae and Lachnospiraceae. In conclusion, Salmonella Typhimurium infection significantly alters the intestinal microbiota of ducks and poses a serious public health risk.

4.
Antimicrob Agents Chemother ; 68(2): e0059423, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38193669

RESUMEN

Understanding how bacteria evolve resistance to phages has implications for phage-based therapies and microbial evolution. In this study, the susceptibility of 335 Salmonella isolates to the wide host range Salmonella phage BPSELC-1 was tested. Potentially significant gene sets that could confer resistance were identified using bioinformatics approaches based on phage susceptibility phenotypes; more than 90 potential antiphage defense gene sets, including those involved in lipopolysaccharide (LPS) biosynthesis, DNA replication, secretion systems, and respiratory chain, were found. The evolutionary dynamics of Salmonella resistance to phage were assessed through laboratory evolution experiments, which showed that phage-resistant mutants rapidly developed and exhibited genetic heterogeneity. Most representative Salmonella hosts (58.1% of 62) rapidly developed phage resistance within 24 h. All phage-resistant mutant clones exhibited genetic heterogeneity and observed mutations in LPS-related genes (rfaJ and rfaK) as well as other genes such as cellular respiration, transport, and cell replication-related genes. The study also identified potential trade-offs, indicating that bacteria tend to escape fitness trade-offs through multi-site mutations, all tested mutants increased sensitivity to polymyxin B, but this does not always affect their relative fitness or biofilm-forming capacity. Furthermore, complementing the rfaJ mutant gene could partially restore the phage sensitivity of phage-resistant mutants. These results provide insight into the phage resistance mechanisms of Salmonella and the complexity of bacterial evolution resulting from phage predation, which can inform future strategies for phage-based therapies and microbial evolution.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Lipopolisacáridos , Salmonella , Mutación , Fenotipo , Bacterias
5.
Microorganisms ; 11(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138083

RESUMEN

Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use of antibiotics has led to the emergence of multidrug resistance in E. coli as a significant global problem and long-term challenge. Resistant E. coli can be transmitted to humans through animal products or the environment, which presents significant public health concerns and food safety issues. In this study, we analyzed the features of 135 E. coli strains obtained from a white feather broiler farm in Shandong, China, including antimicrobial susceptibility tests, detection of class 1 integrons, drug resistance genes, virulence genes, and phylogenetic subgroups. It is particularly worrying that all 135 E. coli strains were resistant to at least five antibiotic agents, and 100% of them were multidrug-resistant (MDR). Notably, the resistance genes of blaTEM, blaCTX-M, qnrS, aaC4, tetA, and tetB exhibited a high prevalence of carriage among the tested resistance genes. However, mcr-2~mcr-9 were not detected, while the prevalence of mcr-1 was found to be 2.96%. The most common virulence genes detected were EAST1 (14.07%, encoding enterotoxins) and fyuA (14.81%, encoding biofilm formation). Phylogenetic subgroup analysis revealed that E. coli belonging to groups B2 and D, which are commonly associated with high virulence, constituted 2.22% and 11.11%, respectively. The positive rate of class 1 integrons was 31.1%. Whole-genome sequencing (WGS) and animal experiments were performed on a unique isolated strain called 21EC78 with an extremely strong membrane-forming capacity. The WGS results showed that 21EC78 carried 11 drug resistance genes and 16 virulence genes. Animal experiments showed that intraperitoneal injection with 2 × 105 CFU could cause the death of one-day-old SPF chickens in 3 days. However, the mortality of Luhua chickens was comparatively lower than that of SPF chickens. This study reports the isolation of multidrug-resistant E. coli strains in poultry, which may pose a potential threat to human health via the food chain. Furthermore, the findings of this study enhance our comprehension of the frequency and characteristics of multidrug-resistant E. coli in poultry farms, emphasizing the urgent need for improved and effective continuous surveillance to control its dissemination.

6.
Microorganisms ; 11(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138130

RESUMEN

Salmonella enterica subsp. enterica serovar Gallinarum biovar pullorum (Salmonella pullorum) is an avian-specific pathogen that has caused considerable economic losses to the poultry industry. High endemicity, poor implementation of hygiene measures, and lack of effective vaccines hinder the prevention and control of this disease in intensively maintained poultry flocks. In recent years, the incidence of arthritis in chicks caused by Salmonella pullorum infection has increased. In this study, four Salmonella pullorum strains were identified from the livers, spleens, and joint fluids of Qingjiaoma chicken breeders with arthritis clinical signs, and an arthritis model of chicks was successfully established using SP206-2. Whole genome sequencing of the SP206-2 strain showed that the genome was 4,730,579 bp, 52.16% GC content, and contained 5007 genes, including 4729 protein-coding regions. The genomic analysis of four arthritis-causing isolates and three diarrhea-causing isolates showed that the genome of arthritis-causing isolates was subject to nonsynonymous mutations, shift mutations, and gene copy deletions. An SNP phylogenetic tree analysis showed that arthritis-causing isolates are located in a different evolutionary branch from diarrhea-causing isolates. Further differential genes analysis showed that the genome of arthritis-causing isolates had missense mutations in genes related to substance metabolism and substance transport, as a result of adaptive evolution.

7.
Patterns (N Y) ; 4(8): 100800, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602209

RESUMEN

We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relationships linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genome on a daily basis. We show that GP-based SCV relationships in conjunction with genome-wide co-occurrence analysis provides an early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs). EWAD can anticipate changes in the pattern of performance of spread and pathology weeks in advance, identifying signatures destined to become VOCs. GP-based analyses of variation across entire viral genomes can be used to monitor micro and macro features responsible for host-pathogen balance. The versatility of GP-based SCV defines starting point for understanding nature's evolutionary path to complexity through natural selection.

8.
Poult Sci ; 102(7): 102715, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37209652

RESUMEN

Antibiotic treatment failure is increasingly encountered for the emergence of pandrug-resistant isolates, including the prototypical broad-host-range Salmonella enterica serovar (S.) Typhimurium, which mainly transmitted to humans through poultry products. In this study we explored the therapeutic potential of a Salmonella phage composition containing a virulent phage and a nonproductive phage that does not produce progeny phage against chicks infected with a pandrug-resistant S. Typhimurium strain of avian origin. After approximately 107 CFU of S. Typhimurium strain ST149 were administrated to chicks by intraperitoneal injection, the phage combination (∼108 PFU) was gavaged at 8-h, 32-h, and 54-h postinfection. At d 10 postinfection, phage treatment completely protected chicks from Salmonella-induced death compared to 91.7% survival in the Salmonella challenge group. In addition, phage treatment also greatly reduced the bacterial load in various organs, with Salmonella colonization levels decreasing more significantly in spleen and bursa than in liver and cecal contents, possibly due to higher phage titers in these immune organs. However, phages could not alleviate the decreased body weight gain and the enlargement of spleen and bursa of infected chicks. Further examination of the bacterial flora in the cecal contents of chicks found that S. Typhimurium infection caused a remarkable decrease in abundance of Clostridia vadin BB60 group and Mollicutes RF39 (the dominant genus in chicks), making Lactobacillus the dominate genus. Although phage treatment partially restored the decline of Clostridia vadin BB60 group and Mollicutes RF39 and increased abundance of Lactobacillus caused by S. Typhimurium infection, Fournierella that may aggravate intestinal inflammation became the major genus, followed by increased Escherichia-Shigella as the second dominate bacterial genus. These results suggested that successive phage treatment modulated the structural composition and abundance of bacterial communities, but failed to normalize the intestinal microbiome disrupted by S. Typhimurium infection. Phages need to be combined with other means to control the spread of S. Typhimurium in poultry.


Asunto(s)
Bacteriófagos , Enfermedades de las Aves de Corral , Salmonelosis Animal , Fagos de Salmonella , Humanos , Animales , Pollos/microbiología , Salmonella typhimurium , Ciego/microbiología , Carga Bacteriana/veterinaria , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/terapia , Enfermedades de las Aves de Corral/microbiología
9.
Microorganisms ; 11(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36838355

RESUMEN

Salmonella enterica is considered a significant threat to the global poultry industry and public health. In recent decades, antimicrobial resistance in Salmonella enterica has attracted increasing concern throughout the world. However, limited information is available on Salmonella enterica among different breeds of breeder chickens. Thus, this study aimed to compare the prevalence, serotype distribution, emergence of extended-spectrum beta-lactamases (ESBLs), antimicrobial resistance, and genetic resistance mechanisms in Salmonella enterica among different breeds of breeder chickens. A total of 693 samples (dead embryos, cloacal swabs, water, feed, environmental swabs, and meconium of newly hatched chicks) were selected and cultured for Salmonella from four breeder chicken farms in Shandong province, China, representing one imported and three native breeds, and the isolates were further serotyped. Of the Salmonella isolates, susceptibility to 11 antimicrobials of 5 classes, ESBL screening, and the presence of 21 antimicrobial resistance genes were determined in the present study. Overall, 94 (13.6%) isolates were recovered, which were divided into 3 serotypes (Salmonella Pullorum (n = 36), Salmonella Thompson (n = 32), and Salmonella Enteritidis (n = 26)). The results showed that the prevalence of Salmonella enterica isolates from the imported breeds was higher compared with the three domestic breeds. Eight of the ninety-four isolates were ESBL-positive strains, which were recovered from a domestic breed chicken farm. These eight ESBL-producing isolates were serotyped to Pullorum. Surprisingly, Salmonella Enteritidis (S. enteritidis) and S. pullorum were simultaneously isolated from a single dead embryo observed among one native breed. Meanwhile, among the Salmonella isolates, 53.2% (50/94) were multidrug-resistant strains, and 44.7% (42/94) of the isolates presented resistance to at least five antibiotics. Nearly all of the isolates (97.9%, 92/94) were resistant to at least one antimicrobial; one isolate of S. Thompson was resistant to seven antimicrobial agents belonging to four different classes. The carriage rate of three resistance genes (tetA, tetB, and sul1) among isolates from the imported breeds (87%, 70%, and 65.2%) was higher than that in those from domestic breeds (35.2%, 36.6, and 14.1%). To our knowledge, this is the first report of ESBLs-producing Salmonella isolated from a Chinese native breed of breeder chickens. Our results also highlight that a high prevalence of multidrug-resistant Salmonella enterica contamination is widespread among different breeds of breeder chickens, which is a major risk of food-borne diseases and public health.

10.
Biology (Basel) ; 12(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36829587

RESUMEN

Phage therapy is widely being reconsidered as an alternative to antibiotics for the treatment of multidrug-resistant bacterial infections, including salmonellosis caused by Salmonella. As facultative intracellular parasites, Salmonella could spread by vertical transmission and pose a great threat to both human and animal health; however, whether phage treatment might provide an optional strategy for controlling bacterial vertical infection remains unknown. Herein, we explored the effect of phage therapy on controlling the vertical transmission of Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum), a poultry pathogen that causes economic losses worldwide due to high mortality and morbidity. A Salmonella phage CKT1 with lysis ability against several S. enterica serovars was isolated and showed that it could inhibit the proliferation of S. Pullorum in vitro efficiently. We then evaluated the effect of phage CKT1 on controlling the vertical transmission of S. Pullorum in an adult broiler breeder model. The results demonstrated that phage CKT1 significantly alleviated hepatic injury and decreased bacterial load in the liver, spleen, heart, ovary, and oviduct of hens, implying that phage CKT1 played an active role in the elimination of Salmonella colonization in adult chickens. Additionally, phage CKT1 enabled a reduction in the Salmonella-specific IgG level in the serum of infected chickens. More importantly, the decrease in the S. Pullorum load on eggshells and in liquid whole eggs revealed that phage CKT1 effectively controlled the vertical transmission of S. Pullorum from hens to laid eggs, indicating the potential ability of phages to control bacterial vertical transmission.

11.
Poult Sci ; 102(3): 102474, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689784

RESUMEN

Unlike rodent cells, spontaneous immortalization of avian cells and human cells is a very rare event. According to patent publications and current literature, there are no more than 4 spontaneously immortalized chicken embryo fibroblast (CEF) cell lines established up to date. One of those cell lines is ADOL (Avian Disease and Oncology Laboratory) ZS-1 cell line, which was established by continuous passaging of the CEFs derived from the specific pathogen free (SPF) 0.TVB*S1 (commonly known as rapid feathering susceptible or RFS) genetic line of chickens. The RFS genetic line of chickens was developed and has been maintained on the SPF chicken farm of USDA-ARS facility, ADOL, in East Lansing, Michigan, which is known as one of a few lines of chickens that are free of any known avian endogenous virus genes. To explore potential roles that epigenetic factors may play in modulating cellular senescence processes and spontaneous immortalization state, total RNAs extracted from samples of the RFS primary CEFs, RFS CEFs reached the 21st passage, and the ZS-1 cells were subjected to small RNA sequencing. Collectively, a total of 531 miRNAs was identified in the 3 types of samples. In contrast to the primary CEF samples, 50 miRNAs were identified with significantly differential expression only in the 21st passage samples; a different subset of 63 differentially expressed miRNAs was identified only in the ZS-1 samples; the majority of differentially expressed miRNAs identified in both the 21st passage CEF and the ZS-1 samples were more or less directionally consistent. Gene Ontology analysis results suggested that the epigenetic factor, miRNAs, plays a role in modulating the cellular senescence and spontaneous immortalization processes through various bioprocesses and key pathways including ErbB and MAPK signaling pathways. These findings provided the experimental and bioinformatic evidence for a better understanding on the epigenetic factor of miRNAs in association with cellular senescence and spontaneous immortalization process in avian cells.


Asunto(s)
Senescencia Celular , Pollos , MicroARNs , Análisis de Secuencia de ARN , Animales , Embrión de Pollo , Senescencia Celular/genética , Pollos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , MicroARNs/genética , MicroARNs/metabolismo , Análisis de Secuencia de ARN/veterinaria
12.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674973

RESUMEN

Bone health problems are a serious threat to laying hens; microbiome-based therapies, which are harmless and inexpensive, may be an effective solution for bone health problems. Here, we examined the impacts of supplementation with Clostridium butyricum (CB) on bone and immune homeostasis in pullets. The results of in vivo experiments showed that feeding the pullets CB was beneficial to the development of the tibia and upregulated the levels of the bone formation marker alkaline phosphatase and the marker gene runt-related transcription factor 2 (RUNX2). For the immune system, CB treatment significantly upregulated IL-10 expression and significantly increased the proportion of T regulatory (Treg) cells in the spleen and peripheral blood lymphocytes. In the in vitro test, adding CB culture supernatant or butyrate to the osteoblast culture system showed no significant effects on osteoblast bone formation, while adding lymphocyte culture supernatant significantly promoted bone formation. In addition, culture supernatants supplemented with treated lymphocytes (pretreated with CB culture supernatants) stimulated higher levels of bone formation. In sum, the addition of CB improved bone health by modulating cytokine expression and the ratio of Treg cells in the immune systems of layer pullets. Additionally, in vitro CB could promote the bone formation of laying hen osteoblasts through the mediation of lymphocytes.


Asunto(s)
Pollos , Clostridium butyricum , Animales , Femenino , Pollos/metabolismo , Suplementos Dietéticos , Desarrollo Óseo , Citocinas/metabolismo
13.
Cell Chem Biol ; 30(1): 22-42.e5, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36630963

RESUMEN

Genetic variation in alpha-1 antitrypsin (AAT) causes AAT deficiency (AATD) through liver aggregation-associated gain-of-toxic pathology and/or insufficient AAT activity in the lung manifesting as chronic obstructive pulmonary disease (COPD). Here, we utilize 71 AATD-associated variants as input through Gaussian process (GP)-based machine learning to study the correction of AAT folding and function at a residue-by-residue level by pharmacological activation of the ATF6 arm of the unfolded protein response (UPR). We show that ATF6 activators increase AAT neutrophil elastase (NE) inhibitory activity, while reducing polymer accumulation for the majority of AATD variants, including the prominent Z variant. GP-based profiling of the residue-by-residue response to ATF6 activators captures an unexpected role of the "gate" area in managing AAT-specific activity. Our work establishes a new spatial covariant (SCV) understanding of the convertible state of the protein fold in response to genetic perturbation and active environmental management by proteostasis enhancement for precision medicine.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de alfa 1-Antitripsina , Humanos , Proteostasis , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/genética , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo
14.
Vet Microbiol ; 276: 109632, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521295

RESUMEN

The S. Enteritidis causes serious economic losses to the poultry industry every year. Vaccines that induce a mucosal immune response may be successful against an S. Enteritidis infection because mucosa plays an important role in preventing S. Enteritidis from entering the body. In order to develop novel and potent oral vaccines based on Bacillus subtilis (B. subtilis) to control the spread of S. Enteritidis in the poultry industry, we constructed a B. subtilis that can secrete a multi-epitope protein (OmpC-FliC-SopF-SseB-IL-18). Oral immunization of chickens was performed, and serum antibodies, mucosal antibodies, specific cellular immunity and serum cytokines were detected. Immunizing chicks with S. Enteritidis was evaluated. The results showed high levels of specific IgG in addition to high levels of specific secretory immunoglobulin A (sIgA) in chickens who received oral administrations of recombinant B. subtilis. Additionally, recombinant B. subtilis may significantly increase the levels of IL-2 and T cell-mediated immunity. Recombinant B. subtilis effectively protected chickens against S. Enteritidis and reduced pathological damage to the spleen and jejunum. Our study's outcomes indicate that the expression of the multi-epitope protein OmpC-FliC-SopF-SseB-IL-18 by B. subtilis could generate a mucosal vaccine candidate for animals to defend against S. Enteritidis in the future.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Animales , Salmonella enteritidis , Bacillus subtilis , Interleucina-18 , Epítopos , Pollos , Administración Oral , Inmunidad Mucosa , Salmonelosis Animal/prevención & control , Enfermedades de las Aves de Corral/prevención & control
15.
Poult Sci ; 102(2): 102308, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470026

RESUMEN

Salmonella Pullorum is one of the most important avian pathogenic bacteria due to widespread outbreaks accompanied by high mortality. It has been demonstrated that the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq is able to induce cross-immunity protection against Salmonella Gallinarum and Salmonella Infantis, however, it is unknown whether this vaccine is effective against Salmonella Pullorum infection. In the present study, the Hubbard parent chickens were orally administrated this vaccine at 1-day-old, 40-day-old, and 131-day-old respectively, and challenged by Salmonella Pullorum at 157-day-old to evaluate the protective effect of the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq. After each vaccination, the vaccine strain could be recovered from cloacal swabs within a week, whereas no vaccine strain was re-isolated from environmental samples throughout the experiment. Vaccination for the breeder chickens with Salmonella Enteritidis Sm24/Rif12/Ssq could relieve swollen liver (P = 0.0066) caused by Salmonella Pullorum infection and decrease Salmonella Pullorum colonization level in spleen (P = 0.0035), whereas no significant difference was found in the bacterial counts of liver, ovary and oviduct of vaccinated chickens. These results suggested that the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq was high safety and effective against Salmonella Pullorum infection to a certain extent.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Femenino , Animales , Salmonella enteritidis , Pollos , Salmonelosis Animal/microbiología , Vacunas Atenuadas , Enfermedades de las Aves de Corral/microbiología
16.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361621

RESUMEN

Effective phage cocktails consisting of multiple virus types are essential for successful phage therapy against pandrug-resistant pathogens, including Salmonella enterica serovar (S.) Typhimurium. Here we show that a Salmonella phage, F118P13, with non-productive infection and a lytic phage, PLL1, combined to inhibit pandrug-resistant S. Typhimurium growth and significantly limited resistance to phages in vitro. Further, intraperitoneal injection with this unique phage combination completely protected mice from Salmonella-induced death and inhibited bacterial proliferation rapidly in various organs. Furthermore, the phage combination treatment significantly attenuated the inflammatory response, restored the generation of CD4+ T cells repressed by Salmonella, and allowed macrophages and granulocytes to participate in immunophage synergy to promote bacterial clearance. Crucially, the non-productive phage F118P13 is less likely to be cleared by the immune system in vivo, thus providing an alternative to phage cocktail against bacterial infections.


Asunto(s)
Bacteriófagos , Fagos de Salmonella , Salmonella enterica , Ratones , Animales , Salmonella typhimurium , Sistema Inmunológico
17.
Poult Sci ; 101(11): 102077, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067578

RESUMEN

Salmonellosis causes massive economic losses globally every year. Especially in poultry, numerous drug-resistant bacteria have emerged; thus, it is imperative to find alternatives to antibiotics. As a probiotic, Clostridium butyricum (C. butyricum) provides the latest strategy for inhibiting the proliferation of Salmonella. This study aimed to evaluate the effects of C. butyricum on intestinal environment and gut microbiome under Salmonella infection. In this study, we modeled the infection of Salmonella using specific pathogen-free (SPF) chicks and found that the use of C. butyricum directly reduced the number of Salmonella colonizations in the spleen and liver. It also alleviated the histopathological changes of the liver, spleen, and cecum caused by Salmonella Enteritidis (S. Enteritidis). In addition, S. Enteritidis increased the expression of pro-inflammatory IL-6 in the cecum on day 6 postinfection. Interestingly, we found that C. butyricum changed PPAR-γ transcript levels in the cecum on day 6 postinfection. Analysis of the chick gastrointestinal microbiome showed that Salmonella infection increased the relative abundance of Subdoligranulum variabile. Further analysis found that Salmonella challenge significantly reduced the relative abundance of Faecalibacterium prausnitzii and C. butyricum increased the relative abundance of anaerobic bacteria in the gut on day 6 postinfection. Moreover, early supplementation of C. butyricum restored the epithelial hypoxia in S. Enteritidis infection in chicks. The results suggest that C. butyricum restores epithelial hypoxia caused by S. Enteritidis, improves the stability of intestinal flora, and inhibits the proliferation of Salmonella.


Asunto(s)
Clostridium butyricum , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Salmonelosis Animal/microbiología , Pollos , Enfermedades de las Aves de Corral/microbiología , Salmonella enteritidis , Ciego/microbiología , Hipoxia/veterinaria
18.
World J Gastroenterol ; 28(25): 3006-3007, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35978884

RESUMEN

[This corrects the article on p. 2394 in vol. 27, PMID: 34040330.].

19.
J Poult Sci ; 59(3): 223-232, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35989691

RESUMEN

The effect of the application of copper waterline on the performance and gut health of aged laying hens was evaluated in this study. Forty-eight 70-week-old laying hens were divided into two groups (three replicates of eight hens each): control and copper (Cu) groups provided with normal polyvinyl chloride (PVC) waterline or Cu waterline. The laying performance was measured during the four-week period of the experiment. The intestinal antioxidant status and the microbiota diversity of the cecal content were determined. Moreover, a bacteriostasis test on Escherichia coli and Salmonella enteritidis was conducted after inoculation in waterline and hens, respectively. The water Cu2+ content was increased by Cu waterline compared to the control (P<0.05). Cu waterline had no detectable effect on most production performances, however, it increased the egg weight (P<0.05). Cu waterline increased the Cu level in the eggshell. Cu level in excreta increased with time, especially in the final two weeks, however, there was no significant change in fecal Cu excretion. The lipid peroxidation product malondialdehyde content in ileum decreased (P<0.01), while the activities of CuZn-superoxide dismutase (SOD) of ileum and glutathione peroxidase (GSH-PX) activity of jejunum and ileum increased after Cu treatment. The relative abundance and richness of cecal microbiota increased after Cu treatment (P<0.05). Cu waterline changed the microbial composition, including the increased proportion of Methanocorpusculum, Paludibacter, and decreased proportion of Fucobacterium, Anaerobiospirillum, and Campylobacter. The colonization of E. coli and S. enteritidis in Cu waterline was suppressed by Cu treatment, indicating that Cu waterline had potential antibacterial properties. The result suggests that Cu waterline could inhibit the colonization of pathogenic microorganisms such as E. coli and Salmonella and facilitate the enrichment of cecal microbiota diversity.

20.
Antibiotics (Basel) ; 11(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35740235

RESUMEN

Antibiotic resistance genes of Escherichia coli (E. coli) from companion animals were still poorly understood. Here, we investigated the extended-spectrum ß-lactamases (ESBLs) resistance genes of E. coli from companion animals in Shandong, China. A total of 79 isolates (80.6%) were recovered from 98 healthy or diarrheal companion animals in 2021, among which ESBLs-producing isolates accounted for 43.0% (34/79), and more than half of ESBL E. coli (ESBL-EC) strains (n = 19) were isolated from healthy companion animals. Diarrheagenic E. coli isolates (45.6%, n = 36) were represented by enterotoxigenic (ETEC) (32.9%), enteropathogenic (EPEC) (10.1%) and enteroinvasive (EIEC) (2.6%), 20 isolates of which were from healthy pets. Among tested antibiotics, resistance to tetracycline (64.6%) was the most commonly observed, followed by doxycycline (59.5%) and ampicillin (53.2%). Notably, all isolates were susceptible to meropenem. The multidrug-resistant (MDR) rate was 49.4%, 20 isolates of which were ESBLs producers; moreover, 23.4%, 16.4% of ESBL-EC strains were resistant to 5 or more, 7 or more antibiotics, respectively. Among the 5 ß-lactamase resistance genes, the most frequent gene was blaCTX-M (60.76%), followed by blaSHV (40.51%). The plasmid-mediated quinolone resistance (PMQR) gene aac(6')-Ib-cr was detected in 35 isolates. Additionally, ESBL-associated genes (i.e., blaCTX-M, blaSHV) were found in 76.5% ESBL-EC strains, with six isolates carrying blaCTX-M and blaSHV. The marker gene of high-pathogenicity island gene irp2 (encoding iron capture systems) was the most frequency virulence gene. Our results showed that ESBL-EC were widespread in healthy or diarrhea companion animals, especially healthy pets, which may be a potential reservoir of antibiotic resistance, therefore, enhancing a risk to public and animal health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...