Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Circulation ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167456

RESUMEN

BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-ß/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.

2.
Cells ; 12(24)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132114

RESUMEN

Gene expression is under tight regulation from the chromatin structure that regulates gene accessibility by the transcription machinery to protein degradation. At the transcript level, this regulation falls on RNA-binding proteins (RBPs). RBPs are a large and diverse class of proteins involved in all aspects of a transcript's lifecycle: splicing and maturation, localization, stability, and translation. In the past few years, our understanding of the role of RBPs in cardiovascular diseases has expanded. Here, we discuss the general structure and function of RBPs and the latest discoveries of their role in pulmonary and systemic cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme del ARN
3.
Cells ; 12(16)2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37626887

RESUMEN

Mortality from myocardial infarction (MI) has declined over recent decades, which could be attributed in large part to improved treatment methods. Early reperfusion is the cornerstone of current MI treatment. However, reoxygenation via restored blood flow induces further damage to the myocardium, leading to ischemia-reperfusion injury (IRI). While experimental studies overwhelmingly demonstrate that females experience greater functional recovery from MI and decreased severity in the underlying pathophysiological mechanisms, the outcomes of MI with subsequent reperfusion therapy, which is the clinical correlate of myocardial IRI, are generally poorer for women compared with men. Distressingly, women are also reported to benefit less from current guideline-based therapies compared with men. These seemingly contradicting outcomes between experimental and clinical studies show a need for further investigation of sex-based differences in disease pathophysiology, treatment response, and a sex-specific approach in the development of novel therapeutic methods against myocardial IRI. In this literature review, we summarize the current knowledge on sex differences in the underlying pathophysiological mechanisms of myocardial IRI, including the roles of sex hormones and sex chromosomes. Furthermore, we address sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics of current drugs prescribed to limit myocardial IRI. Lastly, we highlight ongoing clinical trials assessing novel pharmacological treatments against myocardial IRI and sex differences that may underlie the efficacy of these new therapeutic approaches.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Femenino , Humanos , Masculino , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Caracteres Sexuales , Investigación , Infarto del Miocardio/terapia , Miocardio
4.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154157

RESUMEN

Myocardial fibrosis and calcification associate with adverse outcomes in nonischemic heart failure. Cardiac fibroblasts (CF) transition into myofibroblasts (MF) and osteogenic fibroblasts (OF) to promote myocardial fibrosis and calcification. However, common upstream mechanisms regulating both CF-to-MF transition and CF-to-OF transition remain unknown. microRNAs are promising targets to modulate CF plasticity. Our bioinformatics revealed downregulation of miR-129-5p and upregulation of its targets small leucine-rich proteoglycan Asporin (ASPN) and transcription factor SOX9 as common in mouse and human heart failure (HF). We experimentally confirmed decreased miR-129-5p and enhanced SOX9 and ASPN expression in CF in human hearts with myocardial fibrosis and calcification. miR-129-5p repressed both CF-to-MF and CF-to-OF transition in primary CF, as did knockdown of SOX9 and ASPN. Sox9 and Aspn are direct targets of miR-129-5p that inhibit downstream ß-catenin expression. Chronic Angiotensin II infusion downregulated miR-129-5p in CF in WT and TCF21-lineage CF reporter mice, and it was restored by miR-129-5p mimic. Importantly, miR-129-5p mimic not only attenuated progression of myocardial fibrosis, calcification marker expression, and SOX9 and ASPN expression in CF but also restored diastolic and systolic function. Together, we demonstrate miR-129-5p/ASPN and miR-129-5p/SOX9 as potentially novel dysregulated axes in CF-to-MF and CF-to-OF transition in myocardial fibrosis and calcification and the therapeutic relevance of miR-129-5p.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , MicroARNs , Humanos , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cardiomiopatías/metabolismo , Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Fibrosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA