Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
EBioMedicine ; 106: 105242, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002385

RESUMEN

BACKGROUND: Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS: Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS: The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION: Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING: The funding sources are listed in the Acknowledgments section.

2.
Nature ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961294

RESUMEN

Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory1,2. How food-preference memory is acquired, consolidated and stored is unclear. Here we show that the posteromedial nucleus of the cortical amygdala (COApm) serves as a computational centre in long-term STFP memory consolidation by integrating social and sensory olfactory inputs. Blocking synaptic signalling by the COApm-based circuit selectively abolished STFP memory consolidation without impairing memory acquisition, storage or recall. COApm-mediated STFP memory consolidation depends on synaptic inputs from the accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus. STFP memory consolidation requires protein synthesis, suggesting a gene-expression mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust but distinct gene-expression signatures induced by STFP memory formation in the COApm that are consistent with synapse restructuring. Our data thus define a neural circuit for the consolidation of a socially communicated long-term memory, thereby mechanistically distinguishing protein-synthesis-dependent memory consolidation from memory acquisition, storage or retrieval.

3.
Biomed Chromatogr ; 38(7): e5907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783548

RESUMEN

VX-548 is an orally active and highly selective NaV 1.8 inhibitor that is undergoing development for the treatment of acute pain. The aim of this study was to develop a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the measurement of VX-548 in monkey plasma. VX-548 was extracted from the plasma using acetonitrile-mediated protein precipitation. The quantitative analysis was performed on a Thermo Vantage TSQ mass spectrometer with ibrutinib as an internal standard. Chromatography was performed on a Waters ACQUITY UPLC BEH C18 column with 0.1% aqueous formic acid and acetonitrile as mobile phase. The precursor-to-product ion transitions were m/z 474.2 > 165.0 and m/z 441.2 > 138.1 for VX-548 and internal standard, respectively. This developed method was successfully validated in the concentration range of 1-1000 ng/mL. The calibration curve showed excellent linearity with a correlation coefficient of >0.999. The precision expressed as relative standard deviation (RSD) was <8.4%, whereas the accuracy denoted as relative error (RE) ranged from -5.0% to 9.1%. The mean recovery was >84%. VX-548 was stable in monkey plasma after storage under certain conditions. The validated method was successfully applied to the pharmacokinetic study of VX-548 in monkey plasma after single oral (2 mg/kg) and intravenous (1 mg/kg) administrations.


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Modelos Lineales , Masculino , Sensibilidad y Especificidad , Límite de Detección , Estabilidad de Medicamentos
4.
BMC Genom Data ; 25(1): 37, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637749

RESUMEN

BACKGROUND: Sweet yellow clover (Melilotus officinalis) is a diploid plant (2n = 16) that is native to Europe. It is an excellent legume forage. It can both fix nitrogen and serve as a medicine. A genome assembly of Melilotus officinalis that was collected from Best corporation in Beijing is available based on Nanopore sequencing. The genome of Melilotus officinalis was sequenced, assembled, and annotated. RESULTS: The latest PacBio third generation HiFi assembly and sequencing strategies were used to produce a Melilotus officinalis genome assembly size of 1,066 Mbp, contig N50 = 5 Mbp, scaffold N50 = 130 Mbp, and complete benchmarking universal single-copy orthologs (BUSCOs) = 96.4%. This annotation produced 47,873 high-confidence gene models, which will substantially aid in our research on molecular breeding. A collinear analysis showed that Melilotus officinalis and Medicago truncatula shared conserved synteny. The expansion and contraction of gene families showed that Melilotus officinalis expanded by 565 gene families and shrank by 56 gene families. The contacted gene families were associated with response to stimulus, nucleotide binding, and small molecule binding. Thus, it is related to a family of genes associated with peptidase activity, which could lead to better stress tolerance in plants. CONCLUSIONS: In this study, the latest PacBio technology was used to assemble and sequence the genome of the Melilotus officinalis and annotate its protein-coding genes. These results will expand the genomic resources available for Melilotus officinalis and should assist in subsequent research on sweet yellow clover plants.


Asunto(s)
Medicago truncatula , Melilotus , Genómica/métodos , Tamaño del Genoma , Sintenía
5.
Nature ; 627(8003): 374-381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326616

RESUMEN

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Asunto(s)
Astrocitos , Comunicación Celular , Perfilación de la Expresión Génica , Memoria a Largo Plazo , Neuronas , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/fisiología , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Análisis de Expresión Génica de una Sola Célula , Ubiquitinación
6.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360943

RESUMEN

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Asunto(s)
Resistencia a la Insulina , Ayuno Intermitente , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Obesidad/genética , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pérdida de Peso
7.
Nature ; 626(7997): 128-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38233523

RESUMEN

The assembly and specification of synapses in the brain is incompletely understood1-3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.


Asunto(s)
Empalme Alternativo , Receptores Acoplados a Proteínas G , Receptores de Péptidos , Sinapsis , Animales , Ratones , Empalme Alternativo/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13 , Subunidades alfa de la Proteína de Unión al GTP Gs , Ligandos , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/deficiencia , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Sinapsis/metabolismo , Transducción de Señal
8.
Biomedicines ; 11(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37893179

RESUMEN

Laminin α4 (LAMA4) is one of the main structural adipocyte basement membrane (BM) components that is upregulated during adipogenesis and related to obesity in mice and humans. We conducted RNA-seq-based gene expression analysis of LAMA4 in abdominal subcutaneous (SC) and visceral (VIS) adipose tissue (AT) depots across three human sub-cohorts of the Leipzig Obesity BioBank (LOBB) to explore the relationship between LAMA4 expression and obesity (N = 1479) in the context of weight loss (N = 65) and metabolic health (N = 42). We found significant associations of LAMA4 with body fat mass (p < 0.001) in VIS AT; higher expression in VIS AT compared to SC AT; and significant relation to metabolic health parameters e.g., body fat in VIS AT, waist (p = 0.009) and interleukin 6 (p = 0.002) in male VIS AT, and hemoglobin A1c (p = 0.008) in male SC AT. AT LAMA4 expression was not significantly different between subjects with or without obesity, metabolically healthy versus unhealthy, and obesity before versus after short-term weight loss. Our results support significant associations between obesity related clinical parameters and elevated LAMA4 expression in humans. Our work offers one of the first references for understanding the meaning of LAMA4 expression specifically in relation to obesity based on large-scale RNA-seq data.

9.
EBioMedicine ; 96: 104771, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37659283

RESUMEN

BACKGROUND: Glucocorticoids (GCs) are widely applied anti-inflammatory drugs that are associated with adverse metabolic effects including insulin resistance and weight gain. Previous research indicates that GCs may negatively impact brown adipose tissue (BAT) activity in rodents and humans. METHODS: We performed a randomised, double-blinded cross-over trial in 16 healthy men (clinicaltrials.govNCT03269747). Participants received 40 mg of prednisone per day for one week or placebo. After a washout period of four weeks, participants crossed-over to the other treatment arm. Primary endpoint was the increase in resting energy expenditure (EE) in response to a mild-cold stimulus (cold-induced thermogenesis, CIT). Secondary outcomes comprised mean 18F-FDG uptake into supraclavicular BAT (SUVmean) as determined by FDG-PET/CT, volume of the BAT depot as well as fat content determined by MRI. The plasma metabolome and the transcriptome of supraclavicular BAT and of skeletal muscle biopsies after each treatment period were analysed. FINDINGS: Sixteen participants were recruited to the trial and completed it successfully per protocol. After prednisone treatment resting EE was higher both during warm and cold conditions. However, CIT was similar, 153 kcal/24 h (95% CI 40-266 kcal/24 h) after placebo and 186 kcal/24 h (95% CI 94-277 kcal/24 h, p = 0.38) after prednisone. SUVmean of BAT after cold exposure was not significantly affected by prednisone (3.36 g/ml, 95% CI 2.69-4.02 g/ml, vs 3.07 g/ml, 95% CI 2.52-3.62 g/ml, p = 0.28). Results of plasma metabolomics and BAT transcriptomics corroborated these findings. RNA sequencing of muscle biopsies revealed higher expression of genes involved in calcium cycling. No serious adverse events were reported and adverse events were evenly distributed between the two treatments. INTERPRETATION: Prednisone increased EE in healthy men possibly by altering skeletal muscle calcium cycling. Cold-induced BAT activity was not affected by GC treatment, which indicates that the unfavourable metabolic effects of GCs are independent from thermogenic adipocytes. FUNDING: Grants from Swiss National Science Foundation (PZ00P3_167823), Bangerter-Rhyner Foundation and from Nora van der Meeuwen-Häfliger Foundation to MJB. A fellowship-grant from the Swiss National Science Foundation (SNF211053) to WS. Grants from German Research Foundation (project number: 314061271-TRR 205) and Else Kröner-Fresenius (grant support 2012_A103 and 2015_A228) to MR.


Asunto(s)
Tejido Adiposo Pardo , Glucocorticoides , Masculino , Humanos , Glucocorticoides/efectos adversos , Tejido Adiposo Pardo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Fluorodesoxiglucosa F18/farmacología , Prednisona/efectos adversos , Prednisona/metabolismo , Estudios Cruzados , Calcio/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Metabolismo Energético , Termogénesis , Frío
10.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37671834

RESUMEN

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

11.
Nat Commun ; 14(1): 4162, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443109

RESUMEN

The current obesity epidemic and high prevalence of metabolic diseases necessitate efficacious and safe treatments. Brown adipose tissue in this context is a promising target with the potential to increase energy expenditure, however no pharmacological treatments activating brown adipose tissue are currently available. Here, we identify AXL receptor tyrosine kinase as a regulator of adipose function. Pharmacological and genetic inhibition of AXL enhance thermogenic capacity of brown and white adipocytes, in vitro and in vivo. Mechanistically, these effects are mediated through inhibition of PI3K/AKT/PDE signaling pathway, resulting in induction of nuclear FOXO1 localization and increased intracellular cAMP levels via PDE3/4 inhibition and subsequent stimulation of the PKA-ATF2 pathway. In line with this, both constitutive Axl deletion as well as inducible adipocyte-specific Axl deletion protect animals from diet-induced obesity concomitant with increases in energy expenditure. Based on these data, we propose AXL receptor as a target for the treatment of obesity.


Asunto(s)
Tejido Adiposo Pardo , Tirosina Quinasa del Receptor Axl , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Obesidad/metabolismo , Adipocitos Blancos/metabolismo , Metabolismo Energético , Tejido Adiposo Blanco/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo
12.
Nat Metab ; 5(6): 996-1013, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37337126

RESUMEN

Adipocyte function is a major determinant of metabolic disease, warranting investigations of regulating mechanisms. We show at single-cell resolution that progenitor cells from four human brown and white adipose depots separate into two main cell fates, an adipogenic and a structural branch, developing from a common progenitor. The adipogenic gene signature contains mitochondrial activity genes, and associates with genome-wide association study traits for fat distribution. Based on an extracellular matrix and developmental gene signature, we name the structural branch of cells structural Wnt-regulated adipose tissue-resident (SWAT) cells. When stripped from adipogenic cells, SWAT cells display a multipotent phenotype by reverting towards progenitor state or differentiating into new adipogenic cells, dependent on media. Label transfer algorithms recapitulate the cell types in human adipose tissue datasets. In conclusion, we provide a differentiation map of human adipocytes and define the multipotent SWAT cell, providing a new perspective on adipose tissue regulation.


Asunto(s)
Tejido Adiposo Pardo , Estudio de Asociación del Genoma Completo , Humanos , Tejido Adiposo Pardo/metabolismo , Adipogénesis/genética , Obesidad/metabolismo , Diferenciación Celular/genética
13.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207645

RESUMEN

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Síndrome de Prader-Willi , Adolescente , Humanos , Trastorno del Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicaciones , Trastornos del Neurodesarrollo/genética , Obesidad/complicaciones , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Proteínas
14.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108048

RESUMEN

Proteoglycans are central components of the extracellular matrix (ECM) and binding partners for inflammatory chemokines. Morphological differences in the ECM and increased inflammation are prominent features of the white adipose tissues in patients with obesity. The impact of obesity and weight loss on the expression of specific proteoglycans in adipose tissue is not well known. This study aimed to investigate the relationship between adiposity and proteoglycan expression. We analyzed transcriptomic data from two human bariatric surgery cohorts. In addition, RT-qPCR was performed on adipose tissues from female and male mice fed a high-fat diet. Both visceral and subcutaneous adipose tissue depots were analyzed. Adipose mRNA expression of specific proteoglycans, proteoglycan biosynthetic enzymes, proteoglycan partner molecules, and other ECM-related proteins were altered in both human cohorts. We consistently observed more profound alterations in gene expression of ECM targets in the visceral adipose tissues after surgery (among others VCAN (p = 0.000309), OGN (p = 0.000976), GPC4 (p = 0.00525), COL1A1 (p = 0.00221)). Further, gene analyses in mice revealed sex differences in these two tissue compartments in obese mice. We suggest that adipose tissue repair is still in progress long after surgery, which may reflect challenges in remodeling increased adipose tissues. This study can provide the basis for more mechanistic studies on the role of proteoglycans in adipose tissues in obesity.


Asunto(s)
Tejido Adiposo , Proteoglicanos , Femenino , Humanos , Masculino , Animales , Ratones , Proteoglicanos/genética , Proteoglicanos/metabolismo , Tejido Adiposo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Adiposidad , Proteínas de la Matriz Extracelular/metabolismo , Dieta Alta en Grasa/efectos adversos
15.
Front Genet ; 14: 1128133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101650

RESUMEN

Increased thermogenesis in brown adipose tissue might have an obesity-reducing effect in humans. In transgenic mice, depletion of genes involved in creatine metabolism results in disrupted thermogenic capacity and altered effects of high-fat feeding on body weight. Data analyses of a sex-stratified genome-wide association study (GWAS) for body mass index (BMI) within the genomic regions of genes of this pathway (CKB, CKMT1B, and GATM) revealed one sex-dimorphic BMI-associated SNP in CKB (rs1136165). The effect size was larger in females than in males. A mutation screen of the coding regions of these three candidate genes in a screening group (192 children and adolescents with severe obesity, 192 female patients with anorexia nervosa, and 192 healthy-lean controls) identified five variants in each, CKB and GATM, and nine variants in the coding sequence of CKMT1B. Non-synonymous variants identified in CKB and CKMT1B were genotyped in an independent confirmation study group (781 families with severe obesity (trios), 320 children and adolescents with severe obesity, and 253 healthy-lean controls). In silico tools predicted mainly benign yet protein-destabilizing potentials. A transmission disequilibrium test in trios with severe obesity indicated an obesity-protective effect of the infrequent allele at rs149544188 located in CKMT1B. Subsequent correlation analyses in 1,479 individuals of the Leipzig Obesity BioBank revealed distinct correlations of CKB with the other two genes in omental visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (SAT). Furthermore, between-subject comparisons of gene expression levels showed generally higher expressions of all three genes of interest in VAT than in SAT. Future in vitro analyses are needed to assess the functional implications of these findings.

16.
Mol Metab ; 69: 101675, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682412

RESUMEN

OBJECTIVES: Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease that can range from hepatic steatosis to non-alcoholic steatohepatitis (NASH), which can lead to fibrosis and cirrhosis. Recently, ketogenic diet (KD), a low carbohydrate diet, gained popularity as a weight-loss approach, although it has been reported to induce hepatic insulin resistance and steatosis in animal model systems via an undefined mechanism. Herein, we investigated the KD metabolic benefits and its contribution to the pathogenesis of NASH. METHODS: Using metabolic, biochemical and omics approaches, we identified the effects of a KD on NASH and investigated the mechanisms by which KD induces hepatic insulin resistance and steatosis. RESULTS: We demonstrate that KD can induce fibrosis and NASH regardless of body weight loss compared to high-fat diet (HFD) fed mice at thermoneutrality. At ambient temperature (23 °C), KD-fed mice develop a severe hepatic injury, inflammation, and steatosis. In addition, KD increases liver cholesterol, IL-6, and p-JNK and aggravates diet induced-glucose intolerance and hepatic insulin resistance compared to HFD. Pharmacological inhibition of IL-6 and JNK reverses KD-induced glucose intolerance, and hepatic steatosis and restores insulin sensitivity. CONCLUSIONS: Our studies uncover a new mechanism for KD-induced hepatic insulin resistance and NASH potentially via IL-6-JNK signaling and provide a new NASH mouse model.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Intolerancia a la Glucosa/etiología , Interleucina-6 , Dieta Alta en Grasa , Dieta Baja en Carbohidratos
17.
Clin Transl Med ; 12(12): e1108, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36480426

RESUMEN

BACKGROUND: Recruitment and activation of brown adipose tissue (BAT) results in increased energy expenditure (EE) via thermogenesis and represents an intriguing therapeutic approach to combat obesity and treat associated diseases. Thermogenesis requires an increased and efficient supply of energy substrates and oxygen to the BAT. The hemoprotein myoglobin (MB) is primarily expressed in heart and skeletal muscle fibres, where it facilitates oxygen storage and flux to the mitochondria during exercise. In the last years, further contributions of MB have been assigned to the scavenging of reactive oxygen species (ROS), the regulation of cellular nitric oxide (NO) levels and also lipid binding. There is a substantial expression of MB in BAT, which is induced during brown adipocyte differentiation and BAT activation. This suggests MB as a previously unrecognized player in BAT contributing to thermogenesis. METHODS AND RESULTS: This study analyzed the consequences of MB expression in BAT on mitochondrial function and thermogenesis in vitro and in vivo. Using MB overexpressing, knockdown or knockout adipocytes, we show that expression levels of MB control brown adipocyte mitochondrial respiratory capacity and acute response to adrenergic stimulation, signalling and lipolysis. Overexpression in white adipocytes also increases their metabolic activity. Mutation of lipid interacting residues in MB abolished these beneficial effects of MB. In vivo, whole-body MB knockout resulted in impaired thermoregulation and cold- as well as drug-induced BAT activation in mice. In humans, MB is differentially expressed in subcutaneous (SC) and visceral (VIS) adipose tissue (AT) depots, differentially regulated by the state of obesity and higher expressed in AT samples that exhibit higher thermogenic potential. CONCLUSIONS: These data demonstrate for the first time a functional relevance of MBs lipid binding properties and establish MB as an important regulatory element of thermogenic capacity in brown and likely beige adipocytes.


Asunto(s)
Adipocitos Marrones , Adipocitos Blancos , Adrenérgicos , Animales , Humanos , Ratones , Lípidos , Mioglobina , Obesidad/genética , Oxígeno
18.
Cell ; 185(24): 4654-4673.e28, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36334589

RESUMEN

Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.


Asunto(s)
Tejido Adiposo Pardo , Proteoma , Humanos , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Proteoma/metabolismo , Termogénesis/fisiología , Adiposidad , Obesidad/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo
19.
PLoS Biol ; 20(9): e3001743, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36126044

RESUMEN

The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.


Asunto(s)
Glucógeno Hepático , Microbiota , Animales , Vida Libre de Gérmenes , Glucosa , Ratones , Obesidad/metabolismo
20.
Redox Biol ; 54: 102353, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777200

RESUMEN

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Animales , Homeostasis , Grasa Intraabdominal/metabolismo , Ratones , Obesidad/genética , Obesidad/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...