Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2307513, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38240267

RESUMEN

Re-emerging human adenovirus type 55 (HAdV55) has become a significant threat to public health due to its widespread circulation and the association with severe pneumonia, but an effective anti-HAdV55 agent remains unavailable. Herein, we report the generation of macaque-derived, human-like monoclonal antibodies (mAbs) protecting against HAdV55 infection with high potency. Using fluorophore-labelled HAdV55 virions as probes, we isolated specific memory B cells from rhesus macaques (Macaca mulatta) that were immunized twice with an experimental vaccine based on E1-, E3-deleted, replication-incompetent HAdV55. We cloned a total of 19 neutralizing mAbs, nine of which showed half-maximal inhibitory concentrations below 1.0 ng/ml. These mAbs recognized the hyper-variable-region (HVR) 1, 2, or 7 of viral hexon protein, or the fibre knob. In transgenic mice expressing human desmoglein-2, the major cellular receptor for HAdV55, a single intraperitoneal injection with hexon-targeting mAbs efficiently prevented HAdV55 infection, and mAb 29C12 showed protection at a dose as low as 0.004 mg/kg. Fibre-targeting mAb 28E8, however, showed protection only at a dose up to 12.5 mg/kg. In tree shrews that are permissive for HAdV55 infection and disease, mAb 29C12 effectively prevented HAdV55-caused pneumonia. Further analysis revealed that fibre-targeting mAbs blocked the attachment of HAdV55 to host cells, whereas hexon-targeting mAbs, regardless of their targeting HVRs, mainly functioned at post-attachment stage via inhibiting viral endosomal escape. Our results indicate that hexon-targeting mAbs have great anti-HAdV55 activities and warrant pre-clinical and clinical evaluation.


Asunto(s)
Adenovirus Humanos , Neumonía , Ratones , Animales , Humanos , Anticuerpos Neutralizantes , Ratones Transgénicos , Anticuerpos Antivirales , Adenovirus Humanos/genética , Tupaia , Macaca mulatta , Anticuerpos Monoclonales , Tupaiidae , Proteínas Virales
2.
Front Cell Dev Biol ; 9: 767624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926456

RESUMEN

Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.

3.
J Leukoc Biol ; 110(6): 1101-1112, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33884660

RESUMEN

Class switch recombination (CSR) changes the effector functions of antibodies and is carried out by classical and alternative nonhomologous end joining (c-NHEJ and A-EJ) of repetitive switch (S) region double-strand breaks (DSBs). The master DNA damage response (DDR) kinase ataxia-telangiectasia mutated (ATM) is critical for CSR in part by suppressing S region DSB resection. However, whether another related DDR kinase ATM- and Rad3-related (ATR) plays similar role in CSR remains elusive. In this study, we investigated the requirement for ATR kinase activity on CSR in both c-NHEJ competent and deficient B cell lines with high-throughput sequencing of S-S junctions. We found that ATR kinase inhibition efficiently blocked both c-NHEJ- and A-EJ-mediated CSR without affecting germline transcription and activation-induced cytosine deaminase expression. In contrast to ATM, ATR does not suppress S region DSB resection and microhomology usage. In addition, ATR kinase inhibition did not affect Cas9-generated DSB end joining by either c-NHEJ and A-EJ. ATR kinase-inhibited stimulated B cells proliferate much slower than controls and exhibited altered cell cycle profile with increased G1 and G2/M phase cells. In summary, our data revealed a role for ATR in promoting both c-NHEJ- and A-EJ-mediated CSR through regulating cell proliferation upon damage without negatively influencing DSB end-joining features.


Asunto(s)
Linfocitos B/inmunología , Ciclo Celular , Roturas del ADN de Doble Cadena , Cambio de Clase de Inmunoglobulina/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos B/metabolismo , Ciclo Celular/inmunología , Línea Celular , Reparación del ADN por Unión de Extremidades/inmunología , Ratones
4.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581096

RESUMEN

Human adenovirus type 55 (HAdV55) represents an emerging respiratory pathogen and causes severe pneumonia with high fatality in humans. The cellular receptors, which are essential for understanding the infection and pathogenesis of HAdV55, remain unclear. In this study, we found that HAdV55 binding and infection were sharply reduced by disrupting the interaction of viral fiber protein with human desmoglein-2 (hDSG2) but only slightly reduced by disrupting the interaction of viral fiber protein with human CD46 (hCD46). Loss-of-function studies using soluble receptors, blocking antibodies, RNA interference, and gene knockout demonstrated that hDSG2 predominantly mediated HAdV55 infection. Nonpermissive rodent cells became susceptible to HAdV55 infection when hDSG2 or hCD46 was expressed, but hDSG2 mediated more efficient HAd55 infection than hCD46. We generated two transgenic mouse lines that constitutively express either hDSG2 or hCD46. Although nontransgenic mice were resistant to HAdV55 infection, infection with HAdV55 was significantly increased in hDSG2+/+ mice but was much less increased in hCD46+/+ mice. Our findings demonstrate that both hDSG2 and hCD46 are able to mediate HAdV55 infection but hDSG2 plays the major roles. The hDSG2 transgenic mouse can be used as a rodent model for evaluation of HAdV55 vaccine and therapeutics.IMPORTANCE Human adenovirus type 55 (HAdV55) has recently emerged as a highly virulent respiratory pathogen and has been linked to severe and even fatal pneumonia in immunocompetent adults. However, the cellular receptors mediating the entry of HAdV55 into host cells remain unclear, which hinders the establishment of HAdV55-infected animal models and the development of antiviral approaches. In this study, we demonstrated that human desmoglein-2 (hDSG2) plays the major roles during HAdV55 infection. Human CD46 (hCD46) could also mediate the infection of HAdV55, but the efficiency was much lower than for hDSG2. We generated two transgenic mouse lines that express either hDSG2 or hCD46, both of which enabled HAd55 infection in otherwise nontransgenic mice. hDSG2 transgenic mice enabled more efficient HAdV55 infection than hCD46 transgenic mice. Our study adds to our understanding of HAdV55 infection and provides an animal model for evaluating HAdV55 vaccines and therapeutics.


Asunto(s)
Adenovirus Humanos/fisiología , Adenovirus Humanos/patogenicidad , Desmogleína 2/genética , Desmogleína 2/metabolismo , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/inmunología , Células A549 , Adulto , Animales , Células CHO , Línea Celular , Cricetulus , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Virales
5.
Virology ; 518: 272-283, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29550678

RESUMEN

Re-emerging human adenoviruses type 14 (HAdV14) and 55 (HAdV55) represent two highly virulent adenoviruses. The neutralizing antibody (nAb) responses elicited by infection or immunization remain largely unknown. Herein, we generated hexon-chimeric HAdV14 viruses harboring each single or entire hexon hyper-variable-regions (HVR) from HAdV55, and determined the neutralizing epitopes of human and mouse nAbs. In human sera, hexon-targeting nAbs are type-specific and mainly recognize HVR2, 5, and 7. Fiber-targeting nAbs are only detectable in sera cross-neutralizing HAdV14 and HAdV55 and contribute substantially to cross-neutralization. Penton-binding antibodies, however, show no significant neutralizing activities. In mice immunized with HAdV14 or HAdV55, a single immunization mainly elicited hexon-specific nAbs, which recognized HAdV14 HVR1, 2, and 7 and HAdV55 HVR1 and 2, respectively. After a booster immunization, cross-neutralizing fiber-specific nAbs became detectable. These results indicated that hexon elicits type-specific nAbs whereas fiber induces cross-neutralizing nAbs to HAdV14 and HAdV55, which are of significance in vaccine development.


Asunto(s)
Adenovirus Humanos/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Reacciones Cruzadas , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Mapeo Epitopo , Humanos , Ratones
6.
Emerg Microbes Infect ; 6(6): e43, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28588291

RESUMEN

Re-emerging human adenovirus types 14 (Ad14) and 55 (Ad55) have caused severe respiratory diseases and even deaths during recent outbreaks. However, the seroprevalence of neutralizing antibodies (nAbs) in healthy adults, which may reflect previous circulation and help to predict potential outbreaks, remains unclear. In this study, we established micro-neutralizing (MN) assays on the basis of recombinant Ad14 and Ad55 reporter viruses, and we investigated serum nAbs in healthy blood donors from Southern China. We found that the overall seropositive rates were 24.8% and 22.4% for Ad14 and Ad55 nAbs, respectively. The seropositive rates were low in individuals younger than 20, and they gradually increased with age. Ad55-seropositive individuals tended to have high nAb titers (>1000), while low (72-200) and moderate (201-1000) nAb levels were frequently observed in Ad14-seropositive ones. Surprisingly, the seropositive rates and nAb levels were associated with the blood type but not the gender of the blood donors, with type AB individuals displaying higher seropositive rates and nAb levels. Interestingly, a significant positive correlation was observed between Ad14 and Ad55 seroprevalence, and higher titers of nAbs were detected in double-positive individuals compared to single-positive ones. These results clarified the human humoral immune responses against Ad14 and Ad55 and revealed a low level of herd immunity in some subpopulations, which emphasized the importance of monitoring these two highly virulent adenoviruses and reinforced the development of prophylactic vaccines.


Asunto(s)
Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/inmunología , Adenovirus Humanos/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Estudios Seroepidemiológicos , Adolescente , Adulto , Factores de Edad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , China/epidemiología , Brotes de Enfermedades/prevención & control , Femenino , Voluntarios Sanos , Humanos , Inmunidad Humoral , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Adulto Joven
7.
Bing Du Xue Bao ; 32(6): 810-6, 2016 11.
Artículo en Chino | MEDLINE | ID: mdl-30004656

RESUMEN

Human adenoviruses cause respiratory diseases, conjunctivitis, gastroenteritis and even severe pneumonia. Specific antiviral drugs and vaccines are still unavailable. Animal models that support adenovirus infection and pathogenesis are critical for the study of these viruses and the development of prophylactic and therapeutic strategies. However, the receptors of some human adenoviruses have not yet been identified, most human respiratory adenoviruses cannot infect rodents, and human adenoviruses cannot replicate in rodents due to host restrictions.These factors hamper the establishment of animal models that support adenovirus pathogenesis. In this review, we discuss recent advances in research into human adenovirus receptors, host range restriction factors and animal models, and provide insights for the development of animal models supporting adenovirus infection or/and pathogenesis.


Asunto(s)
Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/fisiología , Modelos Animales de Enfermedad , Adenovirus Humanos/genética , Animales , Humanos , Ratones , Primates , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...