Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 463: 132936, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37948782

RESUMEN

Most nanozyme-based electrochemical sensing strategies depend on the catalytic formation of electroactive substances, while the electrochemical properties of nanozymes have rarely been explored. In this study, magnetic nanoparticles encapsulated metal-organic framework served as precursors to prepare bioinspired nanozymes with both laccase-mimicking activity and electroactivity. Owing to the strong affinity between thiram (THR) and Cu(II) active sites in the nanozymes, the binding of THR inhibited nanozyme catalytic activity toward catechol (CT) oxidation and enhanced nanozyme conductivity. A lower oxidation current (ICT) of CT was accompanied by a higher oxidation signal (ICu) of Cu(II), allowing a ratiometric electrochemical response of the electroactive nanozymes toward the incoming THR. The signal ratio (ICu/ICT) displayed a good linear relationship over a THR concentration range of 10.0 nM-3.0 µM with a limit of detection of 0.15 nM, and the entire THR detection process was rapidly accomplished within 5 min. The high sensitivity and selectivity of the developed electrochemical strategy guaranteed the reliable detection of THR in fruit, vegetable, and river water samples. This study provides new insights into the development of nanozymes for electrochemical analysis.


Asunto(s)
Lacasa , Nanopartículas , Tiram , Oxidación-Reducción , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...