Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Microbiol ; 15: 1287083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756734

RESUMEN

Yeast is one of the important symbiotic flora in the insect gut. However, little is known about the gut yeast in Helicoverpa armigera (Lepidoptera: Noctuidae) under various dietary conditions. The composition and function of the intestinal yeast community also remain unclear. In this research, we explored the composition of yeast microorganisms in H. armigera larvae under different feeding environments, including apple, pear, tomato, artificial diet (laboratory feeding), Urtica fissa, Helianthus annuus, and Zinnia elegans (wild environment) using high-throughput sequencing. Results showed that a total of 43 yeast OTU readings were obtained, comprising 33 yeast genera and 42 yeast species. The yeast genera with a total content of more than 5% were Hanseniaspora (36.27%), Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces (12.96%) and Pichia (6.38%). Hanseniaspora was predominant when fed indoors with fruits, whereas Moesziomyces was only detected in the wild group (Urtica fissa, Helianthus annuus, Zinnia elegans) and the artificial diet group. After transferring the larvae from artificial diet to apple, pear and tomato, the composition of intestinal yeast community changed, mainly reflected in the increased relative abundance of Hanseniaspora and the decreased abundance of Trichosporon. Simultaneously, the results of α diversity index indicated that the intestinal yeast microbial diversity of H. armigera fed on wild plants was higher than that of indoor artificial feeding. PCoA and PERMANOVA analysis concluded that there were significant differences in the gut yeast composition of H. armigera larvae on different diets. Our results confirmed that gut yeast communities of H. armigera can be influenced by host diets and may play an important role in host adaptation.

2.
Inorg Chem ; 63(17): 7886-7895, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38621298

RESUMEN

In the quest for proficient electrocatalysts for ammonia's electrocatalytic nitrogen reduction, cobalt oxides, endowed with a rich d-electron reservoir, have emerged as frontrunners. Despite the previously evidenced prowess of CoO in this realm, its ammonia yield witnesses a pronounced decline as the reaction unfolds, a phenomenon linked to the electron attrition from its Co2+ active sites during electrocatalytic nitrogen reduction reaction (ENRR). To counteract this vulnerability, we harnessed electron-laden phosphorus (P) elements as dopants, aiming to recalibrate the electronic equilibrium of the pivotal Co active site, thereby bolstering both its catalytic performance and stability. Our empirical endeavors showcased the doped P-CoO's superior credentials: it delivered an impressive ammonia yield of 49.6 and, notably, a Faradaic efficiency (FE) of 9.6% at -0.2 V versus RHE, markedly eclipsing its undoped counterpart. Probing deeper, a suite of ex-situ techniques, complemented by rigorous theoretical evaluations, was deployed. This dual-pronged analysis unequivocally revealed CoO's propensity for an electron-driven valence metamorphosis to Co3+ post-ENRR. In stark contrast, P-CoO, fortified by P doping, exhibits a discernibly augmented ammonia yield. Crucially, P's intrinsic ability to staunch electron leakage from the active locus during ENRR ensures the preservation of the valence state, culminating in enhanced catalytic dynamism and fortitude. This investigation not only illuminates the intricacies of active site electronic modulation in ENRR but also charts a navigational beacon for further enhancements in this domain.

3.
Cancer Lett ; 590: 216844, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38582394

RESUMEN

Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.


Asunto(s)
Chaperonina con TCP-1 , Glioblastoma , Estabilidad Proteica , Proteínas Proto-Oncogénicas p21(ras) , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Chaperonina con TCP-1/metabolismo , Chaperonina con TCP-1/genética , Línea Celular Tumoral , Estabilidad Proteica/efectos de los fármacos , Artemisininas/farmacología , Progresión de la Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
4.
J Fungi (Basel) ; 10(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667957

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can help plants absorb more mineral nutrients after they colonize plant roots, and the mycelia harmonize the soil structure and physical and chemical properties by secreting compounds. AMF species co-evolve with their habitat's geographic conditions and hosts; this gradually causes differences in the AMF species. By using Melzer's reagent to analyze the morphology and using Illumina Miseq sequencing technology to perform the molecular identification of AMF communities among the four typical L. barbarum planting areas (Zhongning, Guyuan, Jinghe, and Dulan) investigated, the variety of L. barbarum roots and rhizosphere AMF communities was greater in the Zhongning area, and every region additionally had endemic species. The successfully amplified AMF was re-applied to the L. barbarum seedlings. We found that the total dry weight and accumulation of potassium increased significantly (p < 0.05), and the root volume and number of root branches were significantly higher in the plants that were inoculated with Paraglomus VTX00375 in the pot experiment, indicating that AMF improves root development and promotes plant growth. We have investigated AMF germplasm species in four regions, and we are committed to the development of native AMF resources. The multiplication and application of AMF will be conducive to realizing the potential role of biology in the maintenance of agroecology.

5.
J Phys Chem Lett ; 15(12): 3354-3362, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498427

RESUMEN

This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.

6.
Environ Res ; 250: 118462, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367835

RESUMEN

Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.


Asunto(s)
Clima Desértico , Microbiota , Microbiología del Suelo , China , Ecosistema , Bacterias/genética , Bacterias/clasificación , Hongos/genética , Hongos/clasificación
7.
J Exp Clin Cancer Res ; 43(1): 25, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246990

RESUMEN

BACKGROUND: Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS: GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS: Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS: DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.


Asunto(s)
Antagonistas de Dopamina , Glioblastoma , Glioma , Proteínas Proto-Oncogénicas c-myc , Animales , Humanos , Ratones , Encéfalo , Proteínas Potenciadoras de Unión a CCAAT/efectos de los fármacos , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Dopamina , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Ratones Desnudos , Familia de Multigenes , Receptores de Dopamina D1/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Proteínas Proto-Oncogénicas c-myc/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo
8.
Small ; : e2311124, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258393

RESUMEN

The electrochemical nitrogen oxidation reaction (NOR) holds significant potential to revolutionize the traditional nitrate synthesis processes. However, the progression in NOR has been notably stymied due to the sluggish kinetics of initial N2 adsorption and activation processes. Herein, the research embarks on the development of a CeO2 -Co3 O4 heterostructure, strategically engineered to facilitate the electron transfer from CeO2 to Co3 O4 . This orchestrated transfer operates to amplify the d-band center of the Co active sites, thereby enhancing N2 adsorption and activation dynamics by strengthening the Co─N bond and diminishing the resilience of the N≡N bond. The synthesized CeO2 -Co3 O4 manifests promising prospects, showcasing a significant HNO3 yield of 37.96 µg h-1 mgcat -1 and an elevated Faradaic efficiency (FE) of 29.30% in a 0.1 m Na2 SO4 solution at 1.81 V versus RHE. Further substantiating these findings, an array of in situ methodologies coupled with DFT calculations vividly illustrate the augmented adsorption and activation of N2 on the surface of CeO2 -Co3 O4 heterostructure, resulting in a substantial reduction in the energy barrier pertinent to the rate-determining step within the NOR pathway. This research carves a promising pathway to amplify N2 adsorption throughout the electrochemical NOR operations and delineates a blueprint for crafting highly efficient NOR electrocatalysts.

10.
Neuro Oncol ; 26(4): 653-669, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38069906

RESUMEN

BACKGROUND: Altered branched-chain amino acid (BCAA) metabolism modulates epigenetic modification, such as H3K27ac in cancer, thus providing a link between metabolic reprogramming and epigenetic change, which are prominent hallmarks of glioblastoma multiforme (GBM). Here, we identified mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), an enzyme involved in leucine degradation, promoting GBM progression and glioma stem cell (GSC) maintenance. METHODS: In silico analysis was performed to identify specific molecules involved in multiple processes. Glioblastoma multiforme cells were infected with knockdown/overexpression lentiviral constructs of HMGCL to assess malignant performance in vitro and in an orthotopic xenograft model. RNA sequencing was used to identify potential downstream molecular targets. RESULTS: HMGCL, as a gene, increased in GBM and was associated with poor survival in patients. Knockdown of HMGCL suppressed proliferation and invasion in vitro and in vivo. Acetyl-CoA was decreased with HMGCL knockdown, which led to reduced NFAT1 nuclear accumulation and H3K27ac level. RNA sequencing-based transcriptomic profiling revealed FOXM1 as a candidate downstream target, and HMGCL-mediated H3K27ac modification in the FOXM1 promoter induced transcription of the gene. Loss of FOXM1 protein with HMGCL knockdown led to decreased nuclear translocation and thus activity of ß-catenin, a known oncogene. Finally, JIB-04, a small molecule confirmed to bind to HMGCL, suppressed GBM tumorigenesis in vitro and in vivo. CONCLUSIONS: Changes in acetyl-CoA levels induced by HMGCL altered H3K27ac modification, which triggers transcription of FOXM1 and ß-catenin nuclear translocation. Targeting HMGCL by JIB-04 inhibited tumor growth, indicating that mediators of BCAA metabolism may serve as molecular targets for effective GBM treatment.


Asunto(s)
Aminopiridinas , Glioblastoma , Hidrazonas , Liasas , Humanos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilación , beta Catenina/genética , Línea Celular Tumoral , Proliferación Celular , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Histonas/genética , Liasas/genética , Liasas/metabolismo
11.
Microbiol Spectr ; 12(1): e0164923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38038455

RESUMEN

IMPORTANCE: Suaeda play an important ecological role in reclamation and improvement of agricultural saline soil due to strong salt tolerance. At present, research on Suaeda salt tolerance mainly focuses on the physiological and molecular regulation. However, the important role played by microbial communities in the high-salinity tolerance of Suaeda is poorly studied. Our findings have important implications for understanding the distribution patterns and the driving mechanisms of different Suaeda species and soil salinity levels. In addition, we explored the key microorganisms that played an important ecological role in Suaeda rhizosphere. We provide a basis for biological improvement and ecological restoration of salinity-affected areas.


Asunto(s)
Chenopodiaceae , Rizosfera , Archaea , Salinidad , Bacterias/genética , Suelo/química , Chenopodiaceae/fisiología , Microbiología del Suelo
12.
J Am Chem Soc ; 145(49): 26699-26710, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38039528

RESUMEN

Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.

13.
Front Microbiol ; 14: 1226142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795290

RESUMEN

Shihezi Reclamation Area is located at the southern edge of the Junggar Basin, with natural, soil, and climatic conditions unique to the production of peaches. In turn, peach orchards have accumulated rich microbial resources. As an important taxon of soil fungi, the diversity and community structure changes of yeast in the soil of peach orchards on spatial and temporal scales are still unknown. Here, we aimed to investigate the changes in yeast diversity and community structure in non-rhizosphere and rhizosphere soils of peach trees of different ages in the peach orchard and the factors affecting them, as well as the changes in the yeast co-occurrence network in the peach orchard at spatial and temporal scales. High-through put sequencing results showed that a total of 114 yeast genera were detected in all soil samples, belonging to Ascomycota (60 genera) and Basidiomycota (54 genera). The most dominant genus, Cryptococcus, was present in greater than 10% abundance in each sample. Overall, the differences in yeast diversity between non-rhizosphere and rhizosphere soil of peach trees at 3, 8 and 15 years were not significant. Principal coordinate analysis (PCoA) showed that differences in yeast community structure were more pronounced at the temporal scale compared to the spatial scale. The results of soil physical and chemical analysis showed that the 15-year-old peach rhizosphere soil had the lowest pH, while the OM, TN, and TP contents increased significantly. Redundancy analysis showed that soil pH and CO were key factors contributing to changes in soil yeast community structure in the peach orchard at both spatial and temporal scales. The results of co-occurrence network analysis showed that the peach orchard soil yeast network showed synergistic effects as a whole, and the degree of interactions and connection tightness of the 15-year-old peach orchard soil yeast network were significantly higher than the 3- and 8-year-old ones on the time scale. The results reveal the distribution pattern and mechanism of action of yeast communities in peach orchard soils, which can help to develop effective soil management strategies and improve the stability of soil microecology, thus promoting crop growth.

14.
Front Oncol ; 13: 1255164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736545

RESUMEN

Introduction: Safranal is an active component of the traditional Tibetan medicine (TTM) saffron, which has potential anticancer activity. Methods and results: Here, we studied the therapeutic effect and mechanism of safranal on GBM. CCK-8, GBM-brain organoid coculture experiments and 3D tumour spheroid invasion assays showed that safranal inhibited GBM cell proliferation and invasion in vitro. Network pharmacology, RNA-seq, molecular docking analysis, western blotting, apoptosis, and cell cycle assays predicted and verified that safranal could promote GBM cell apoptosis and G2/M phase arrest and inhibit the PI3K/AKT/mTOR axis. In vivo experiments showed that safranal could inhibit GBM cell growth alone and in combination with TMZ. Conclusion: This study revealed that safranal inhibits GBM cell growth in vivo and in vitro, promotes GBM cell apoptosis and G2/M phase arrest, inhibits the PI3K/AKT/mTOR axis and cooperate with TMZ.

15.
RSC Adv ; 13(39): 27512-27519, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37720837

RESUMEN

Early diagnosis and treatment are of great significance for hindering the progression of brain disease. The limited effects of available treatments and poor prognosis are currently the most pressing problems faced by clinicians and their patients. Therefore, developing new diagnosis and treatment programs for brain diseases is urgently needed. Near-infrared (NIR)-light-responsive, lanthanide-doped upconversion nanoparticles (UCNPs) provide great advantages both in diagnosis and therapy. Hence, we synthesised nanoparticles comprised of a UCNPs core with surface functionalization. UCNPs@Au was used for NIR fluorescence imaging in the brain and inhibiting the growth of mouse glioma 261 (GL261) cells depending on photothermal properties. In addition, a UCNPs core and a mesoporous silica layer as the outer shell with a tannic acid-Al3+ ions (TA-Al) complex as a "gatekeeper" were used for pH-triggered doxorubicin/small interfering ribonucleic acid delivery in vitro. Based on our preliminary results, we expect to develop more multifunctional nanoscale diagnostic and therapeutic agents based on UCNPs for the diagnosis and treatment of brain diseases, including Alzheimer's disease, Parkinson's disease, and brain tumours.

17.
ACS Nano ; 17(14): 13974-13984, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37410800

RESUMEN

Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C-C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f-O 2p-Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d-p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at -1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.

18.
Front Mol Neurosci ; 16: 1198713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37501725

RESUMEN

Background: Gliomas are the most common primary tumors of the central nervous system, with high heterogeneity and highly variable survival rates. Accurate classification and prognostic assessment are key to the selection of treatment strategies. One hallmark of the tumor is resistance to cell death. PANoptosis, a novel mode of programmed cell death, has been frequently reported to be involved in the innate immunity associated with pathogen infection and played an important role in cancers. However, the intrinsic association of PANoptosis with glioma requires deeper investigation. Methods: The genetics and expression of the 17 reported PANoptosome-related genes were analyzed in glioma. Based on these genes, patients were divided into two subtypes by consensus clustering analysis. After obtaining the differentially expressed genes between clusters, a prognostic model called PANopotic score was constructed after univariate Cox regression, LASSO regression, and multivariate Cox regression. The expression of the 5 genes included in the PANopotic score was also examined by qPCR in our cohort. The prognostic differences, clinical features, TME infiltration status, and immune characteristics between PANoptotic clusters and score groups were compared, some of which even extended to pan-cancer levels. Results: Gene mutations, CNVs and altered gene expression of PANoptosome-related genes exist in gliomas. Two PANoptotic clusters were significantly different in prognosis, clinical features, immune characteristics, and mutation landscapes. The 5 genes included in the PANopotic score had significantly altered expression in glioma samples in our cohort. The high PANoptotic score group was inclined to show an unfavorable prognosis, lower tumor purity, worse molecular genetic signature, and distinct immune characteristics related to immunotherapy. The PANoptotic score was considered as an independent prognostic factor for glioma and showed superior prognostic assessment efficacy over several reported models. PANopotic score was included in the nomogram constructed for the potential clinical prognostic application. The associations of PANoptotic score with prognostic assessment and tumor immune characteristics were also reflected at the pan-cancer level. Conclusion: Molecular subtypes of glioma based on PANoptosome-related genes were proposed and PANoptotic score was constructed with different clinical characteristics of anti-tumor immunity. The potential intrinsic association between PANoptosis and glioma subtypes, prognosis, and immunotherapy was revealed.

20.
Angew Chem Int Ed Engl ; 62(29): e202303794, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37226852

RESUMEN

Electrocatalytic nitrogen reduction reaction (ENRR) has emerged as a promising approach to synthesizing green ammonia under ambient conditions. Tungsten (W) is one of the most effective ENRR catalysts. In this reaction, the protonation of intermediates is the rate-determining step (RDS). Enhancing the adsorption of intermediates is crucial to increase the protonation of intermediates, which can lead to improved catalytic performance. Herein, we constructed a strong interfacial electric field in WS2 -WO3 to elevate the d-band center of W, thereby strengthening the adsorption of intermediates. Experimental results demonstrated that this approach led to a significantly improved ENRR performance. Specifically, WS2 -WO3 exhibited a high NH3 yield of 62.38 µg h-1 mgcat -1 and a promoted faraday efficiency (FE) of 24.24 %. Furthermore, in situ characterizations and theoretical calculations showed that the strong interfacial electric field in WS2 -WO3 upshifted the d-band center of W towards the Fermi level, leading to enhanced adsorption of -NH2 and -NH intermediates on the catalyst surface. This resulted in a significantly promoted reaction rate of the RDS. Overall, our study offers new insights into the relationship between interfacial electric field and d-band center and provides a promising strategy to enhance the intermediates adsorption during the ENRR process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...